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1 Introduction

1.1 Why Fault-Tolerant Control?

Nowadays, control systems are everywhere in our life. They are all around us,
often remaining invisible for the eye of most of us. They are in our kitchens, in
our DVD-players and computers. They are driving the elevators, we have them
in our cars, ships, aircraft and spacecraft. Control systems are present in every
industry, they are used to control chemical reactors, distillation columns, and
nuclear power plants. They are constantly and inexhaustibly working, making
our life more comfortable and more pleasant... Until the system fails.

Faults in technological systems are events that happen rarely, often at unex-
pected moments of time. In Isermann and Ballé (1997) the following definition
for a fault is made:

fault is an unpermitted deviation of at least one char-
acteristic property or parameter of the system from the
acceptable/usual/standard condition.

Faults are difficult to foresee and prevent. Their further development into overall
system failures may lead to consequences that take different forms and scales,
ranging from having to spend another e 50 for a new coffee machine to enor-
mous economical and human losses in safety-critical systems. There are numer-
ous examples of such dramatic incidents as a result of failures in safety-critical
systems. Several such examples are

1. the explosion at the nuclear power plant at Chernobyl, Ukraine, on 26 April
1986 (Mahmoud et al. 2003). About 30 people were killed immediately,
while another 15,000 were killed and 50,000 left handicapped in the emer-
gency clean-up after the accident. It is estimated that five million peo-
ple were exposed to radiation in Ukraine, Belarus and Russia (BBC World
2001).

2. the crash of the AMERICAN AIRLINES flight 191, a McDonnell-Douglas DC-
10 aircraft, at Chicago O’Hare International Airport on 25 May 1979. 271
persons on board and 2 on the ground were killed when the aircraft crashed
into an open field (NTSB 1979; Patton 1997).

1



2 Chapter 1 Introduction

3. the explosion of the Ariane 5 rocket on 4 June 1996, where the reason was a
fault in the Internal Reference Unit that has the task to provide the control
system with altitude and trajectory information. As a result, incorrect alti-
tude information was delivered to the control unit (Mahmoud et al. 2003).

4. the crash of the Boeing 747-200F freighter on 4 October 1992. Shortly af-
ter takeoff from Schiphol Amsterdam International Airport multiple engine
separations on the right wing occurred leading to different severe dam-
ages. Fifteen minutes later the aircraft crashed into an eleven-floor build-
ing (Maciejowski and Jones 2003).

The question that immediately arises is “Could something have been done
to prevent these disasters?”. While in most situations the occurrences of faults
in the systems cannot be prevented, subsequent analysis often reveals that the
consequences of faults could be avoided or, at least, that their severity (in terms
of economic losses, casualties, ets.) could be minimized. If faults could timely
be detected and diagnosed in many cases it is possible to subsequently recon-
figure the control system so that it can safely continue its operation (possibly
with degraded performance) until the time comes when it can be switched off
for maintenance. In order to minimize the chances for catastrophic events as
those summarized above, safety-critical systems must possess the properties of
increased reliability and safety.

A way to achieve that is by means of fault-tolerant control system (FTCS) de-
sign. An FTCS could have been designed to lead to a safe shutdown of the Sher-
nobyl reactor way before it exploded (Mahmoud et al. 2003). Subsequent stud-
ies after the McDonnell-Douglas DC-10 crash showed that the crash could have
been avoided (Patton 1997). At the last minutes of the Ariane 5 crash the nor-
mal altitude information has been replaced by some diagnostic information that
the control system was not designed to understand (Mahmoud et al. 2003). Fi-
nally, in the case with the Boeing freighter, simulation studies (Maciejowski and
Jones 2003) have subsequently revealed that it was possible to reconfigure the
controller so that the aircraft could be landed safely. Fortunately, such positive
outcomes are not only possible in theory and simulations, but can also happen
in practise:

1. A McDonnell-Douglas DC-10 aircraft executing flight 232 of UNITED AIR-
LINES from Denver to Minneapolis experienced a disastrous failure in the
hydraulic lines that left the plane without any control surfaces at 37,000 ft.
The captains then improvised a control strategy that used only the throt-
tles of the two wing engines and managed to successfully crash-land the
plane in Sioux City, Iowa, saving the lives of 184 out of the 296 passengers
on board (Jones 2002; Maciejowski and Jones 2003).

2. In the DELTA AIRLINES flight 1080 an elevator became jammed at 19 de-
grees up. The pilot has not been given any indication of what has actually
occurred and still was able to reconfigure the remaining lateral control el-
ements and to land the aircraft safely (Patton 1997).

All these examples clearly motivate the need for increased fault-tolerance in
order to improve to the maximum possible extent the safety, reliability and avail-
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Figure 1.1: According to their location, faults are classified into sensor, actuator
and component faults.

ability of the safety-critical modern controlled systems that have constantly in-
creasing complexity. The examples above also explain the large amount of re-
search in the field of fault detection, diagnosis and fault-tolerant control. An
overview of this research will be provided in section 1.5 of this chapter. The pur-
pose of this thesis is to develop methods for achieving increased fault-tolerance
by means of fault-tolerant control.

1.2 Fault Classification

Fault are events that can take place in different parts of the controlled system. In
the FTCS literature faults are classified according to their location of occurrence
in the system as (see Figure 1.1)

actuator faults: they represent partial or total (complete) loss of control action.
An example of a completely lost actuator is a “stuck” actuator that pro-
duces no (controllable) actuation regardless of the input applied to it. To-
tal actuator fault can occur, for instance, as a result of a breakage, cut or
burned wiring, shortcuts, or the presence of outer body in the actuator.
Partially failed actuator produces only a part of the normal (i.e. under nom-
inal operating conditions) actuation. It can result from, e.g., from hydraulic
or pneumatic leakage, increased resistance or fall in the supply voltage.
Duplicating the actuators in the system in order to achieve increased fault-
tolerance is often not an option due to their high prices and large sizes.

sensor faults: these faults represent incorrect reading from the sensors that the
system is equipped with. Sensor faults can also be subdivided into par-
tial and total. Total sensor faults produce information that is not related
to value of the measured physical parameter. They can be due to broken
wires, lost contact with the surface, etc. Partial sensor faults produce read-
ing that is related to the measured signal in such a way that useful informa-
tion could still be retrieved. This can, for instance, be a gain reduction so
that a scaled version of the signal is measured, a biased measurement re-
sulting in a (usually constant) offset in the reading, or increased noise. Due
to their smaller sizes sensors can be duplicated in the system to increase
the fault tolerance. For instance, by using three sensors to measure the
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signal
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faulty
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Figure 1.2: According to their representation, faults are divided into additive and
multiplicative.

same variable one may consider it reliable enough to compare the read-
ings from the sensors to detect faults in (one and only one) of them. The
so-called “majority voting” method can then be used to pinpoint the faulty
sensor. This approach usually implies significant increase in the related
costs.

component faults: these are faults in the components of the plant itself, i.e. all
faults that cannot be categorized as sensor or actuator faults will be re-
ferred to as component faults. These faults represent changes in the the
physical parameters of the systems, e.g. mass, aerodynamic coefficients,
damping constant, etc., that are often due to structural damages. They of-
ten result in a change in the dynamical behavior of the controlled system.
Due to their diversity, component faults cover a very wide class of (unan-
ticipated) situations, and as such are the most difficult ones to deal with.

The approaches developed in this thesis deal with sensor, actuator and/or com-
ponent faults.

Further, with respect to the way faults are modelled, they are classified as
additive and multiplicative, as depicted on Figure 1.2. Additive faults are suitable
to represent component faults in the system, while sensor and actuator faults are
in practice most often multiplicative by nature.

Faults are also classified according to their time characteristics (see Figure
1.3) as abrupt, incipient and intermittent. Abrupt faults occur instantaneously
often as a result of a hardware damage. Usually they are very severe as they affect
the performance and/or the stability of the controlled system, and as such re-
quire prompt reaction by the FTCS. Incipient faults represent slow in time para-
metric changes, often as a result of aging. They are more difficult to detect due
to their slow time characteristics, but are also less severe. Finally, intermittent
faults are faults that appear and disappear repeatedly, for instance due to par-
tially damaged wiring.

1.3 Modelling Faults

As already mentioned in Section 1.2, according to the way of representation
faults are divided into additive and multiplicative. In this section we further con-
centrate on the mathematical representation of these faults and will provide a



1.3 Modelling Faults 5

fa
u

lt
time

abrupt incipient intermittent

fa
u

lt

time

fa
u

lt

time
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ient and intermittent.

discussion on when and why the one representation is more appropriate than
the other.

Throughout this thesis the state-space representation of dynamical systems
is used, so that the relation from the system inputs u ∈ R

m to the measured
outputs y ∈ R

p is written in the form

Snom :

{
xk+1 = Axk + Buk

yk = Cxk + Duk,
(1.1)

where x ∈ R
n denotes the state of the system.

1.3.1 Multiplicative faults

Multiplicative modelling is mostly used to represent sensor and actuator faults.

Actuator faults represent malfunctioning of the actuators of the system, for
example as a result of hydraulic leakages, broken wires, stuck control surfaces in
an aircraft, etc. Such faults can be modelled as an abrupt change of the nominal
control action from uk to

uf
k = uk + (I − ΣA)(ū− uk), (1.2)

where ū ∈ R
m is a (not necessarily constant) vector that cannot be manipulated,

and where

ΣA = diag{
[

σa
1 , σa

2 , . . . , σa
m

]
}, σa

i ∈ R.

In this way σa
i = 0 represents a total fault (or, in other words, a complete failure)

of i-th actuator of the system so that the control action coming from this i-th
actuator becomes equal to the i-th element of the uncontrollable offset vector
ū, i.e. uf

k(i) = ū(i). On the other hand, σa
i = 1 implies that the i-th actuator

operates normally (uf
k(i) = u(i)). The quantities σa

i , i = 1, 2, . . . ,m can also take
values in between 0 and 1, making it in this way possible to represent partial
actuator faults. Substituting the nominal control action uk in equation (1.1) with

the faulty uf
k results in the following state-space model

Smult,af :

{
xk+1 = Axk + BΣAuk + B(I − ΣA)ū

yk = Cxk + DΣAuk + D(I − ΣA)ū.
(1.3)
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Figure 1.4: After a multiplicative fault the system may become unstable if no
reconfiguration takes place.

Models in the form (1.3) are referred to as multiplicative fault models and have
been widely used in the literature on FTC (see, e.g., Tao et al. (2001); Noura et al.
(2000); Bošković and Mehra (2003)).

It needs to be noted here that while such multiplicative actuator faults do not
directly affect the dynamics of the controlled system itself, they can significantly
affect the dynamics of the closed-loop system, and may even affect the control-
lability of the system. Figure 1.4 presents a simple example with a partial 50%
actuator fault that results in instability of the closed-loop system. In the exam-
ple of Figure 1.4 a system with transfer function S(s) = 1/(s − 1) is controlled
by a PI controller with transfer function C(s) = 1.5 + 5

s , so that a sinusoidal ref-
erence signal is tracked in under normal operating conditions (i.e. during the
first 20 seconds from the simulation). At time instant t = 20 sec, a 50% loss of
control effectiveness is introduced and as a result the closed-loop system stabil-
ity is lost. This example makes it clear that even “seemingly simple” faults may
significantly degrade the performance and can even destabilize the system.

Similarly, sensor faults occurring in the system (1.1) represent incorrect read-
ing from the sensors, so that as a result the real output of the system yreal

k differs
from the variable being measured. Multiplicative sensor faults can be modelled
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in the following way

yf
k = yk + (I − ΣS)(ȳ − yk), (1.4)

where ȳ ∈ R
p is an offset vector, and

ΣS = diag{
[

σs
1, . . . , σs

p

]
}, σs

i ∈ R,

so that σs
j = 0 represents a total fault of j-th sensor, and σs

j = 1 models the
normal mode of operation of the j-th sensor. Partial faults are then modelled by
taking σs

j ∈ (0, 1). Substitution of the nominal measurement yk in (1.1) with its

faulty counterpart yf
k results in the following state-space model that represents

multiplicative sensor faults

Smult,sf :

{
xk+1 = Axk + Buk

yk = ΣSCxk + ΣSDuk + (I − ΣS)ȳ.
(1.5)

In this way, combinations of multiplicative sensor and actuator faults are repre-
sented in the following way

Smult :

{
xk+1 = Axk + BΣAuk + b(ΣA, ū)

yk = ΣSCxk + ΣSDΣAuk + d(ΣA,ΣS , ū, ȳ),
(1.6)

with
b(ΣA, ū) = B(I − ΣA)ū,
d(ΣA,ΣS , ū, ȳ) = ΣSD(I − ΣA)ū + (I − ΣS)ȳ.

The multiplicative model is thus a “natural” way to model a wide variety of sen-
sor and actuator faults, but cannot be used to represent more general compo-
nent faults. This fault model representation is most often used in the design
of the controller reconfiguration scheme of an active FTCS as for controller re-
design one usually needs the state-space matrices of the faulty system. For that
reason, the methods developed in this thesis are mostly based on the multi-
plicative sensor and actuator fault representation, as well as on the more general
component fault representation discussed in section 1.3.3. It is further assumed
throughout this thesis that the faulty system remains at least stabilizable1. It this
assumption does not hold then no stabilizing controller reconfiguration is pos-
sible so that other measures for safe shutdown of the system would have to be
taken when possible. Such measures, however, fall outside of the focus of this
thesis.

1.3.2 Additive faults

The additive faults representation is more general than the multiplicative one. A
state-space model with additive faults has the form

Sadd :

{
xk+1 = Axk + Buk + Ffk

yk = Cxk + Duk + Efk,
(1.7)

1We note that this condition is weaker than a controllability condition. It makes sure that there
exists control action that results in stable closed-loop system. Additionally, in the case when the state
is not directly available for measurement a similar detectability condition is assumed for the same
reason.
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Figure 1.5: Using additive fault representation to model total sensor (actuator)
faults results in a fault signal that depends on yk (uk). This is not the case with the
multiplicative model where the fault magnitude and the offset are independent
on the signals in the state-space model.

where fk ∈ R
nf is a signal describing the faults. This representation may, in

principle, be used to model a wide class of faults, including sensor, actuator,
and component faults. Using model (1.7), however, often results in the signal
fk becoming related to one or more of the signals uk, yk and xk. For instance,
if one would use this additive fault representation to model a total fault in all
actuators (set ΣA = 0 and ū = 0 in equation (1.2) on page 5) then in order to
make model (1.7) equivalent to model (1.3) one needs to take a signal fk such

that
[

F
E

]

fk = −
[

B
D

]

ΣAuk holds, making fk dependent on uk. Clearly, the fault

signal being a function of the control action is not desirable for controller design.
On the other hand, fk is independent on uk when multiplicative representation
is utilized. Figure 1.5 illustrates this.

Another disadvantage of the additive model when used to represent sensor
and actuator faults is that, in terms of input-output relationships, these two
faults become difficult to distinguish. Indeed, suppose that the model

xk+1 = Axk + Buk + fa
k

yk = Cxk + Duk + fs
k ,

is used to represent faults in the sensors and actuators. By writing the corre-
sponding transfer function

y(z) = (C(zI −A)−1B + D)uk + C(zI −A)−1fa
k + fs

k ,

it becomes indeed clear, that the effect of an actuator fault on the output of the
system can be modelled not only by the signal fa

k , but also by fs
k .

An advantage is, as already mentioned, that the additive representation can
be used to model a more general class of faults than the multiplicative one. In
addition to that, it is more suitable for the design of FDD schemes because the
faults are represented by one signal rather than by changes in the state-space
matrices of the system as is the case with the multiplicative representation. For
that reason the majority of FDD methods are focused on additive faults (Gertler
2000; Basseville 1998; Kinnaert 2003; Frank et al. 2000).
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1.3.3 Component faults

The class of component faults was defined in Section 1.2 as the most general
as it includes faults that may bring changes in practically any element of the
system. It was defined as the class of all faults that cannot be classified as sensor
or actuator faults. Component fault may introduce changes in each matrix of
the state-space representation of the system due to the fact they may all depend
on the same physical parameter that undergoes a change. Component faults are
often modelled in the form of a linear parameter-varying (LPV) system

xk+1 = A(f)xk + B(f)uk

yk = C(f)xk + D(f)uk,
(1.8)

where f ∈ R
nf is a parameter vector representing the component faults. Obvi-

ously, this model might also be used for modelling sensor and actuation faults,
in addition. Due to the fact the the matrices may depend in a general nonlinear
way on the fault signal fk this model is less suitable for fault detection and diag-
nosis. Later in this thesis we will present an algorithm for on-line fault-tolerant
control (FTC) for the general model (1.8) when the fault signal f is only known
to lie in some uncertainty interval with time-varying size.

In the next section we continue the discussion with the structure and main
components of a FTCS.

1.4 Main Components in a FTCS

FTCS are generally divided into two classes: passive and active. Passive FTCS are
based on robust controller design techniques and aim at synthesizing one (ro-
bust) controller that makes the closed-loop system insensitive to certain faults.
This approach requires no online detection of the faults, and is therefore com-
putationally more attractive. Its applicability, however, is very restricted due to
its serious disadvantages:

• In order to achieve such robustness to faults, usually a very restricted sub-
set of the possible faults can be considered; often only faults that have a
“small effect” on the behavior of the system can be treated in this way.

• Achieving increased robustness to certain faults is only possible at the ex-
pense of decreased nominal performance. Since faults are effects that hap-
pen very rarely it is not reasonable to significantly degrade the fault-free
performance of the system only to achieve some insensitivity to a restricted
class of faults.

As opposed by the passive methods, the active approach to the design of
FTCS is based on controller redesign, or selection/mixing of predesigned con-
trollers. This technique usually requires a fault detection and diagnosis (FDD)
scheme that has the task to detect and localize the faults that eventually occur in
the system. The structure of an active FDD-based FTCS is presented on Figure
1.6. The FDD part uses input-output measurement from the system to detect
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Figure 1.6: Main components of an active FTCS.

and localize the faults. The estimated faults are subsequently passed to a recon-
figuration mechanism (RM) that changes the parameters and/or the structure of
the controller in order to achieve an acceptable post-fault system performance.

Depending on the way the post-fault controller is formed, the active FTC
methods are further subdivided into projection-based methods and on-line re-
design methods. The projection based methods rely on the controller selection
from a set of off-line predesigned controllers. Usually each controller from the
set is designed for a particular fault situation and is switched on by the RM when-
ever the corresponding fault pattern has been diagnosed by the FDD scheme. In
this way only a restricted, finite class of faults can be treated. The on-line re-
design methods involve on-line computation of the controller parameters, re-
ferred to as reconfigurable control, or recalculation of both the structure and
the parameters of the controller, called restructurable control. Comparing the
achievable post-fault system performances, the on-line redesign method is su-
perior to the passive method and the off-line projection-based method. How-
ever, it is computationally the most expensive method as it often boils down to
on-line optimization.

There are a number of important issues when designing active FTCS. Prob-
ably the most significant one is the integration between the FDD part and the
FTC part. The majority of approaches in the literature are focused on one of
these two parts by either considering the absence of the other or assuming that
it is perfect. To be more specific, many FDD algorithms do not consider the
closed-loop operation of the system on the one hand, and many FTC methods
assume the availability of perfect fault estimates from the FDD scheme on the
other hand. The interconnection of such methods is clearly infeasible and there
can be no guarantees that a satisfactory post-fault performance, or even stabil-
ity, can be maintained by such a scheme. It is therefore very important that the
designs of the FDD and FTC, when carried out separately, are each performed
bearing in mind the presence and imperfection of the other. For making the in-
terconnection possible, one should first investigate what information from the
FDD is needed by the FTC, as well as what information can actually be provided
by the FDD scheme. Imprecise information from the FDD that is incorrectly in-
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terpreted by the FTC scheme might lead to a complete loss of stability of the
system.

An usual situation in practise is that after the occurrence of a fault in the sys-
tem there is initially not enough information in terms of input/output measure-
ments from the system that is available to make it possible for the FDD scheme
to diagnose the fault. For this reason, only after some time elapses and more
information becomes available the FDD scheme can detect that a fault has oc-
curred, and even more time to localize the fault and its magnitude. As a result,
the information that is provided to the FTC part is initially more imprecise (i.e.
with larger uncertainty), and it gets more and more accurate (with less uncer-
tainty) as more data becomes available from the system. The FTC scheme should
be able to deal with such situations. Therefore, the FTC should necessarily be ca-
pable of dealing with uncertainty in the FDD information/estimates, and should
perform satisfactorily (guaranteeing at least the stability) during the transition
period that the FDD scheme needs to diagnose the fault(s).

Very often the dynamics of real physical systems cannot be represented ac-
curately enough by linear dynamical models so that nonlinear models have to
be used. This necessitates the development of techniques for FTCS design that
can explicitly deal with nonlinearities in the mathematical representation of the
system. Nonlinearities are, in fact, very often encountered in the representa-
tions of complex safety-critical controlled systems like aircraft and spacecraft.
For instance, it is usual that the lateral and longitudinal dynamics of an aircraft
are decoupled so that they have no effect on each other. This significantly sim-
plifies the model of the aircraft and makes it possible to design the correspond-
ing controllers independently. This decoupling condition can approximately be
achieved for a healthy aircraft, but certain faults can easily destroy it, so that the
two controllers could not be considered separately.

An important issue in the design of FTCS is that even for a fixed operating
region, where a nonlinear system eventually allows approximation by a linear
model, it is very difficult to obtain an accurate linear representation, either due
to the fact that the physical parameters in the nonlinear model are not exactly
known or because they vary with time. Even the nonlinear model is often de-
rived after some simplifying assumptions, so that it only approximates the be-
havior of the system. Even more, this uncertainty is further increased due to the
linearization that basically consists in truncating second and higher order terms
in the Taylor series expansion of the nonlinear function. As a result only a repre-
sentation with uncertainty is available. It is important that the FTCS is designed
to be robust to such uncertainties in the model of the controlled system.

Another very important issue is that every real-life controlled system has con-
trol action saturation, i.e. the input signal cannot get higher than a certain value.
In the design phase of a control system usually the effect of the saturation is
taken care of by making sure that the control action will not get overly active
and will remain inside the saturation limits under normal operating conditions.
Faults, however, can have the effect that the control action stays at the satura-
tion limit. For instance, when a partial 50% loss of effectiveness in an actuator
has been diagnosed, a standard and easy way to accommodate the fault is to
re-scale the control action by two so that the resulting actuation approximates



12 Chapter 1 Introduction

the fault-free actuation. As a result the control action becomes twice as big and
may go to the saturation limits. Clearly, in such situations one should not try to
completely accommodate the fault but one should be willing to accept to accept
certain performance degradation imposed by the saturation. In other words,
a trade-off between achievable performance and available actuator capability
might need to be made after the occurrence of a fault. This situation is often
referred to as graceful performance degradation Jiang and Zhang (2002).

1.5 The State-of-the-Art in FTC

In this section an overview of the existing work in the area of FTC is given, an
area that is gaining more and more attention lately. For all classes of methods a
short discussion is included with its advantages, drawbacks, and relations to the
methods presented in this thesis. Some overview books and papers in the field of
FTC are (Astrom et al. 2001; Blanke et al. 2003; Hajiyev and Caliskan 2003; Zhang
and Jiang 2003; Patton 1997; Blanke et al. 2000; Rauch 1995; Stengel 1991; Blanke
et al. 2001, 1997; Blanke 1996; van Schrik 2002; Huzmezan and Maciejowski 1997;
Liaw and Y.Liang 2002).

1.5.1 Passive Methods for FTC

As explained in the previous section, the passive methods aim at achieving in-
sensitivity to certain faults by means of making the system robust with respect
to them. When applied for dealing with component faults (see model (1.8) on
page 9) these methods usually assume that the state-space matrices of the sys-
tem depend on the fault signal f in some specific way, e.g. affinely Wu (1997b);
Stoustrup et al. (1997), in the form of a linear fractional transformation (LFT)
Niemann and Stoustrup (2002); Chen et al. (1998a), etc. To overcome this re-
striction, in Chapter 2 of this thesis an algorithm is proposed that does not im-
pose any assumption on the way the system matrices depend on the fault signal,
i.e. f can enter the state-space matrices in a general way as long as they remain
bounded.

In addition to that, in passive FTC methods often fault-tolerance is achieved
by means of representing certain faults as uncertainty in the system so that a
robust controller can be designed. By doing this, however, the structure of this
uncertainty is often neglected in order to arrive at a convex (usually H∞) opti-
mization problem Chen and Patton (2001); Niemann and Stoustrup (2003). To
reduce the resulting conservatism, a nonconvex optimization approach is pro-
posed in Chapter 3 of this thesis that has guaranteed convergence to a local op-
timum of the cost function (H2 andH∞ cost functions are considered).

A summary of some approaches to passive FTC is provided below.

Reliable control:

This passive controller approach aims at making the closed-loop system reliable
so that it pertains stability/performance in the cases of some specific anticipated
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faults. The goal is to search for a controller that optimizes the so called worst-
fault performance (usually in terms of LQR orH∞ design) for all possible antici-
pated faults (usually a set of sensor or actuator outages). The approach assumes
that complete failures may occur only in a predefined subset of the set of sensors
and actuators of the system. For an overview of reliable control methods consult
(Veillette 1992, 1995; Hsieh 2002; Yang et al. 1999; Zhao and Jiang 1998; Niemann
and Stoustrup 2002; Liang et al. 2000; Liao et al. 2002; Seo and Kim 1996; Chang
2000; Cho and Bien 1989; Suyama 2002; Suyama and Zhang 1997; Ge et al. 1996;
Suyama and Zhang 1997; Ferreira 2002).

Robust control:

This is another class of passive approaches that aims at the design of one ro-
bust controller that meets not only the design specifications under normal op-
erating conditions, but also achieves some performance in cases of some faults.
These approaches are usually based on quantitative feedback theory (Keating
et al. 1997; Niksefat and Sepehri 2002) or robust H∞ controller design (Zhou
and Ren 2001; Zhou 2000; Chen and Patton 2001; Niemann and Stoustrup 2003;
Stoustrup et al. 1997; Stoustrup and Niemann 2001; Tyler and Morari 1994; Mu-
rad et al. 1996; Chen et al. 1998a,b; Demetriou 2001b; Hamada et al. 1996; Joshi
1997; Maghami et al. 1998; Suzuki and Tomizuka 1999; Wu 1997b, 1993).

1.5.2 Active Methods for FTC

Due to their improved performance and their ability to deal with a wider class
of faults, the active methods for FTC have gained much more attention in the
literature than the passive ones. A bibliographical overview is presented below.

Pseudo Inverse:

The pseudo-inverse method (PIM) (Gao and Antsaklis 1991) is one of the most
cited active methods to FTC due to its computational simplicity and its ability to
handle a very large class of system faults. The basic version of the PIM considers
a nominal linear system

{
xk+1 = Axk + Bu

yk = Cxk,
(1.9)

with linear state-feedback control law uk = Fxk, under the assumption that the
state vector is available for measurement. The method allows for a very general
post-fault system representation

{

xf
k+1 = Afxf

k + BfuR
k

yf
k = Cfxf

k ,
(1.10)

where the new, reconfigured control law is taken with the same structure, i.e.

uR
k = FRxf

k . The goal is then to find the new state-feedback gain matrix FR in
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such a way that the “distance” (defined below) between the A-matrices of the
nominal and the post-fault closed-loop systems is minimized, i.e.

PIM :

{
FR = arg min

FR

‖(A + BF )− (Af + BfFR)‖F

= B†
f (A + BF −Af ),

(1.11)

where B†
f is the pseudo-inverse of the matrix Bf . The advantages of this ap-

proach are that it is very suitable for on-line implementation due to its simplicity,
and moreover, that it allows for changes in all state-space matrices of the system
as a consequence of the faults. A very strong disadvantage is, however, that the
optimal control law computed by equation (1.11) does not always stabilize the
closed-loop system. Simple examples that confirm this fact can easily be gener-
ated, see e.g. Gao and Antsaklis (1991). To circumvent this problem, the modi-
fied pseudo-inverse method was developed in Gao and Antsaklis (1991) that basi-
cally solves the same problem under the additional constraint that the resulting
closed-loop system remains stable. This, however, results in a constraint opti-
mization problem that increases the computational burden. Similar approach
is also discussed in (Rauch 1994; Liu 1996), where the reconfigured control ac-

tion uR
k is directly computed from the nominal control uk as uR

k = B†
fBuk. Other

modifications of this approach were proposed considering additive faults on the
state equation and additive term on the control action to compensate for them
(Theilliol et al. 1998; Noura et al. 2000, 1999), static output-feedback is consid-
ered in (Konstantopoulos and Antsaklis 1999, 1995), and matching of the fre-
quency responses of the nominal and the post-fault closed-loop systems is con-
sidered in Yang and Blanke (2000a). Another disadvantage of the approach is
that it deals with the state-feedback case, and that it is, in general, not applica-
ble to sensor faults as well as to problems with model and/or FDD uncertainty.
An extension of this method that deals with both sensor and actuator faults is
proposed in Kanev and Verhaegen (2000a) where a bank of reconfigurable LQG
controllers has been developed. The stability is enforced through LMI optimiza-
tion.

Eigenstructure assignment:

The eigenstructure assignment (EsA) method (Liu and Patton 1998; Seron et al.
1996) to controller reconfiguration is a more intuitive approach than the PIM as
it aims at matching the eigenstructures (i.e. the eigenvalues and the eigenvec-
tors) of the A-matrices of the nominal and the faulty closed-loop systems. The
main idea is to exactly assign some of the most dominant eigenvalues while at
the same time minimizing the 2-norm of the difference between the correspond-
ing eigenvectors. The procedure has been developed both under constant state-
feedback (Zhang and Jiang 1999a, 2000) and output-feedback (Konstantopou-
los and Antsaklis 1996a,b; Belkharraz and Sobel 2000). More specifically, in the
state-feedback case, if λi, i = 1, 2, . . . , n are the eigenvalues of the A-matrix of
the nominal closed-loop system formed as the interconnection of (1.9) with the
constant state-feedback control action uk = Fxk, and if vi are their correspond-
ing eigenvectors, the EsA method computes the state-feedback gain FR for the
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faulty model (1.10) as the solution to the following problem (Zhang and Jiang
1999a)

EsA :







Find FR

such that (Af + BfFR)vf
i = λiv

f
i , i = 1, . . . , n,

and vf
i = arg min

vf
i

‖vi − vf
i ‖

2
Wi

,
(1.12)

where ‖vi − vf
i ‖

2
Wi

= (vi − vf
i )T Wi(vi − vf

i ). In other words, the new gain FR

needs to be such that the poles of the resulting closed-loop system coincide with
the poles of the nominal closed-loop system and, in addition, the eigenvectors
of the closed-loop A-matrices are as close as possible. As both the eigenvectors
and the eigenvalues determine the shape of the time response of the closed-loop
system, this method can be thought of as trying to preserve the nominal closed-
loop system time-response after the occurrence of faults. Thus, the objective of
the EsA method seems more “natural” than that of the PIM and, moreover, the
stability is guaranteed. The computational burden of the approach is not high
since analytic expression for the solution to (1.12) is available (Zhang and Jiang
1999a), i.e. no on-line optimization is necessary. Disadvantage is that model and
FDD uncertainties cannot be easily incorporated in the optimization problem,
and that only static controllers are considered.

Multiple Model:

The multiple model (MM) method is another active approach to FTC that be-
longs rather to the class of projection based methods than to the on-line re-
design methods. It is based on a finite set of linear models Mi, i = 1, 2, . . . , N
that describe the system in different operating conditions, i.e. in the presence of
different faults in the system. For each such local model Mi a controller Ci is de-
signed (off-line). The key in the design is to develop a an on-line procedure that
determines the global control action through a (probabilistically) weighted com-
bination of the different control actions can be taken (Athans et al. 1977; May-
beck and Stevens 1991; Griffin and Maybeck 1997; Zhang and Jiang 2001, 1999b;
Theilliol et al. 2003; Demetriou 2001a). The control action mixing is sometimes
called blending (Griffin and Maybeck 1997). The mixing is usually based on a
bank of Kalman filters, where each Kalman filter is designed for one of the local
models Mi. On the basis of the residuals of the Kalman filters the probabili-
ties µi ≥ 0 of each model to be in effect are computed that subsequently act as
weights in the computation of the control action

u(k) =
N∑

i=1

µi(k)ui(k),
N∑

i=1

µi = 1, (1.13)

where ui(k) is the control action produced by the controller designed for the i-th
local model.

The multiple model method is a very attractive tool for modelling and control
of nonlinear systems. However, these approaches usually only consider a finite
number of anticipated faults only and proceed by building one local model for



16 Chapter 1 Introduction

each anticipated fault. In this way, at each time instant only one model, say
model Mi, is assumed to be in effect, so that its corresponding weight µi is ap-
proximately equal to one and all other weights µj , j 6= i are close to zero. In
such cases at each time instant one local controller is “active”, namely the one
corresponding to the model Mi that is in effect. The disadvantage here is that
if the current model is not in the predesigned model set and is instead formed
by some convex combination of the local models in the model set (representing,
for instance, unanticipated faults) then, in general, the control action (1.13) is
not the optimal one for this model. A simple example is provided in Chapter 7 of
this thesis that illustrates that forming the global control action as in (1.13) can
in such cases even lead to instability of the closed-loop system. In order to avoid
that when dealing with unanticipated faults, the approach proposed in Chapter
7 considers a bank of predictive controllers and forms the global control action
in an optimal way (in terms of minimizing a cost function), so that the optimal
control action for the current model is used at each time instant instead of (1.13).
Another disadvantage of the MM approaches is that model uncertainties, as well
as uncertainties in the weights µi(k), can not be considered.

Controller switching:

This method practically represents the class of projection-based methods to ac-
tive FTC. Similarly to the MM method, its starting point is a set of local linear
models that represent the system at some pre-defined (anticipated) fault situa-
tions. A controller is then designed for each model so that it can be switched on
when the corresponding model best matches the current dynamical behavior
of the system. The difference with the MM method is that no mixing of con-
trol actions is performed here, but only switching, i.e. only one controller is ac-
tive at each time instant. In Bošković et al. (1999); Bošković and Mehra (1998);
Gopinathan et al. (1998); Lemos et al. (1999); Musgrave et al. (1997) the outputs
of the local models are compared to the measured system output, and on the
basis of the so-formed residuals decisions are taken about which model best de-
scribes the current mode of operation of the system. Recently, an interesting ap-
proach was proposed by Yamé and Kinnaert (2003) where the switching is per-
formed based on closed-loop performance monitoring. In Ge and Lin (1996);
Mahmoud et al. (2000a) more attention is payed on the design of the bank of
controllers in an integrated manner via coupled Ricatti equations by assuming
the fault process and the FDD process to be first order Markov processes with
given transition probability matrices. There are also many other approaches
based on controller switching (Maki et al. 2001; Rato and Lemos 1999; Chang
et al. 2001; Médar et al. 2002). The problem of reducing the transients during
switching has also been recently considered by Kovácsházy et al. (2001).

A drawback of the approaches based on controller switching is that they can
only deal with a limited set of anticipated faults. Advantage is that model un-
certainty can easily be considered by means of designing the local controllers
robust with respect to it.
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Integrated FDD & FTC:

There exist a number of papers that do not consider the problems of FTC and
FDD separately, but rather combine them in one framework. For instance, many
multiple model control approaches can readily be combined with MM-based
FDD schemes like, for instance, the Interacting Multiple Model (IMM) estimator
(Zhang and Jiang 1999b). Such approaches are considered in Zhang and Jiang
(2001); Maybeck and Stevens (1991); Zhang and Jiang (1999b,a). There are, how-
ever, many other integrated FDD & FTC methods, e.g. combination of MM-
based FDD methods with control redistribution (Maybeck 1999) or with PID
controller (Zhou and Frank 1998), combination of adaptive methods for FDD
and FTC (Bošković and Mehra 2003), reconfiguration based on adding a scaled
residual signal from the FDD scheme to the nominal control action (Jakubek and
Jorgl 2000).

These integrated methods, however, do not consider model uncertainty. More-
over, they are usually developed by means of directly interconnecting an FDD
scheme with an FTC scheme, paying little or no attention on possible impreci-
sions in the FDD information. Striving to overcome these drawbacks, in Chapter
4 of this thesis a method is developed that ensures robustness with respect to
both model and FDD uncertainties. It is also shown in the same chapter how
the performance of this method can further be improved when the FDD scheme
provides not only fault estimates, but also the size of the uncertainty in these
estimates.

Model Following:

The model following method is another approach to active FTC. Basically, the
method considers a reference model of the form

xM
k+1 = AMxM

k + BMrk,
yM

k = xM
k ,

where rk is a reference trajectory signal. The goal is to compute matrices Kr and
Kx such that the feedback interconnection of the open-loop system (1.9) and the
state-feedback control action

uk = Krrk + Kxxk

matches the reference model. To this end the reference model and closed-loop
system are written in the form

yM
k+1 = AMxM

k + BMrk,
yk+1 = (CA + CBKx)xk + CBKrrk,

so that perfect model following (PMF) can be achieved by selecting

PMF:

{
Kx = (CB)−1(AM − CA),
Kr = (CB)−1BM ,

(1.14)

provided that the system is square (i.e. dim(y) = dim(u)), and that the inverse
of the matrix CB exists. When the exact system matrices (A,B) in (1.14) are
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unknown, they can be substituted by some estimated values (Â, B̂), resulting
in the indirect (explicit) method (Bodson and Groszkiewicz 1997). The indirect
method provides no guarantees for closed-loop stability, and in addition, the
matrix (CB̂) may not be invertible. In order to avoid the need for estimating the
plant parameters, the direct (implicit) method to model following can be used
that directly estimates the controller gain matrices Kr and Kx by means of an
adaptive scheme. Two approaches to direct model following exist, the output
error method and the input error method. For more details on that the reader is
referred to Bodson and Groszkiewicz (1997); Morse and Ossman (1990); Gao and
Antsaklis (1992); Bošković et al. (2000a); Zhang and Jiang (2002). We note here,
that the direct model following method is based on adaptation rules and as such
is also a candidate for the group of adaptive control methods.

Similar direct model-following ideas were used in an interesting series of re-
cent publications that deal with multiplicative actuator faults, where both the
state-feedback (Tao et al. 2001, 2002b, 2000b) and the output-feedback (Tao et al.
2002a, 2000a; Fei et al. 2003) cases have been considered.

The model following methods have the advantage that they usually do not
require FDD scheme. A strong drawback is, however, that they are not applica-
ble to sensor faults. In addition to that these methods do not deal with model
uncertainty.

Adaptive Control:

Adaptive control methods form a class of methods that is very suitable for ac-
tive FTC. Due to their ability to automatically adapt to changes in the system
parameters, these methods could be called “self-reconfiguable”, i.e. they often
don’t require the blocks “reconfiguration mechanism” and “FDD” in Figure 1.6.
This, however is mostly true for component faults and actuator faults, but not
for some sensor faults. If one, for instance, makes use of an adaptive control
scheme based on output-feedback design to compensate for sensor faults it will
make the faulty measurement (rather than the true signal) track a desired ref-
erence signal, and this in turn may even lead to instability. Indeed, in a case
of a total sensor failure an adaptive controller may try to increase the control
action to make the faulty measured signal equal to the desired value that will
not be possible due to the complete failure of the sensor. In such cases an FDD
scheme is needed to detect the sensor failure, and a reconfiguration mechanism
would have to appropriately reconfigure the adaptive controller. We note here
that the direct model following approaches and the MM approaches, discussed
above, also belong to the class of adaptive control algorithms. Linear parameter-
varying control methods to FTC design (Bennani et al. 1999; Ganguli et al. 2002;
Shin et al. 2002) are also members of this class. The approaches developed in
Chapter 4 of this thesis also belong to the LPV approaches to FTC. The improve-
ment there is that these methods deal with structured parametric and FDD un-
certainty, and that they are applicable to a much wider class of faults as the fault
signal is allowed to enter the state-space matrices of the system in any way as
long as the matrices remain bounded. Other adaptive methods for FTC can be
found in (Dionı́sio et al. 2003; Jiang et al. 2003; Kececi et al. 2003b,a; Ahmed-Zaid
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et al. 1991; Bošković et al. 2000b; Ikeda and Shin 1998; Kim et al. 2001a; Siwakosit
and Hess 2001; Qu et al. 2001). These, however, do not deal with model uncer-
tainty.

Model Predictive Control:

Model predictive control (MPC) is an industrially relevant control strategy that
has received a lot of attention lately. Due to the underlying optimization that
needs to be executed at each time instant, it is an attractive method mainly for
slower processes such as those encountered in the chemical industry (Kothare
et al. 1996). This optimization is based on matching (in the vector 2-norm sense)
a prediction of the system output to some desired reference trajectory. The latter
is assumed to be known in advance. In addition, MPC features the property that
it can handle constraints on the inputs and states of the system in an explicit way
by incorporating them into the optimization problem.

As discussed in Astrom et al. (2001), the MPC architecture allows fault-tole-
rance to be embedded in a relatively easy way by: (a) redefining the constraints
to represent certain faults (usually actuator faults), (b) changing the internal
model, (c) changing the control objectives to reflect limitations due to the faulty
mode of operation. In such a way there is practically no additional optimization
that needs to be executed on-line as a consequence of a fault being diagnosed,
so that this method can be viewed as having an inherent self-reconfiguration
property. However, if state-feedback MPC is used in an interconnection with an
observer one should also take care to also reconfigure the observer appropri-
ately in order to achieve fault-tolerant state estimation. For an overview of the
work on MPC-based FTC the reader is referred to Maciejowski and Jones (2003);
Huzmezan and Maciejowski (1999, 1998a,c,b); Kerrigan and Maciejowski (1999)
and the references therein.

With its self-reconfiguration capability the MPC is very suitable and attrac-
tive for the purposes of achieving fault-tolerance. Most state-space approaches
to MPC are, however, derived under the assumption that the state of the system
is measured. In such cases the algorithms can readily be extended to deal with
model uncertainties as in Kothare et al. (1996). When the state is not measured,
if no uncertainty is present in the model an observer can be designed to provide
the missing state information. In the model uncertainty case, however, the sep-
aration principle is no longer valid, so that the observer and the state-feedback
MPC controller cannot be designed separately. For that reason an approach is
proposed in Chapter 5 of this thesis that integrates the design of a Kalman filter
and a finite-horizon MPC into one optimization, making it in this way possible
to include model uncertainties into the problem. Disadvantage here is the in-
creased computational complexity.

Analysis of FTCS:

Recently, there has been quite some interest in the analysis of FTCS (Mahmoud
et al. 2003). The stability of FTCS systems has been studied in different publica-
tions in a stochastic framework (Mahmoud et al. 2003, 2001, 1999, 2000b,c, 2002;
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Ge and Frank 1995). In this formulation a system of the form

ẋ(t) = A(t)x(t) + B(η(t))u(x(t),Ψ(t), t),
u(x(t),Ψ(t), t) = −K(Ψ(t))x(t),

is considered, where η(t) represents actuator fault process, and where Ψ(t) rep-
resents the FDD process. For the analysis it is assumed that η(t) and Ψ(t) are
Markov processes with finite state spaces S = {1, 2, . . . , s} and R = {1, 2, . . . , r},
respectively. In this way only a finite set if anticipated actuator faults can be con-
sidered. It is further assumed that the transition probabilities of the two Markov
processes are given. As discussed in (Mahmoud et al. 2003) it is in practice very
difficult to obtain these transition probabilities. For such systems the stochastic
stability is analyzed in the presence of noise, uncertainties, and input satura-
tions by means of coupled matrix Riccati equations. Markov models were also
used for reliability analysis in some recent publications (Wu 2001a,b; Wu and
Patton 2003). The reconfigurability property of systems have also been stud-
ied and measures for the level of redundancy have been proposed in Wu et al.
(2000b,c); Staroswiecki (2002). Some other works on FTCS analysis can be found
in Bonivento et al. (2003a); Shin and Belcasrto (2003); Frei et al. (1999); Gehin
and Staroswiecki (1999); Staroswiecki et al. (1999); Yang and Hicks (2002); Izadi-
Zamanabadi and Staroswiecki (2000).

Online optimization/redesign:

The approaches based on on-line redesign and on-line optimization are com-
putationally more expensive algorithms. The control re-allocation method, for
instance, is an on-line optimization approach (Buffington et al. 1999; Burken
et al. 1999; Maybeck 1999; Eberhardt and Ward 1999). This is a strategy that is
usually applied in aircraft control for providing actuator fault tolerance, where
increased hardware redundancy is present in the effectors. The goal is after a
failure of an effector to redistribute/re-allocate its actuation over the remain-
ing effectors, which is achieved by means of on-line optimization. Other meth-
ods to FTC design based on on-line optimization can be found in Looze et al.
(1985); Dardinier-Maron et al. (1999); Tortora et al. (2002); Wu et al. (2000a); Yang
and Stoustrup (2000); Yang and Blanke (2000b); Zhang et al. (2002); Marcos et al.
(2003). We note here that the method for robust output-feedback MPC discussed
in Chapter 5 of this thesis, classified above into the MPC methods, might also be
viewed as a member of the class of online optimization methods.

Fault-Tolerant Measurement/State Estimation:

Providing fault-tolerant state estimation is also an important issue when the
controller is dependent on the state estimates provided by an observer. In such
cases sensor, actuator and component faults result in incorrect state-estimates
that are being fed to the controller. This may result in degraded performance
and/or instability. Reconstruction of the state of the system from faulty mea-
surements has been considered in Theilliol et al. (2001). For output-feedback
controllers, the sensor fault masking method (Wu et al. 2003) is an example of a
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technique for providing increased fault-tolerance in the measurements by sub-
stituting the missing measurements by estimates. Similar idea has been used in
Ponsart et al. (2001).

Neuro-Fuzzy:

Methods based on neural networks and fuzzy logic have also received attention
by the FTC society. These methods have the advantage that they are applicable
to FTC for nonlinear systems that are usually modelled by means of a Takagi-
Sugeno fuzzy model as, e.g., in Diao and Passino (2001). The learning capabili-
ties of these methods make it possible to adapt the model and the controller after
the occurrence of a fault in the system. For more details on neuro-fuzzy methods
for FTC, the interested reader is referred to Fray et al. (2003); Ballé et al. (1998);
Chen and Narendra (2001); Diao and Passino (2001, 2002); Lopez-Toribio et al.
(1999); Marcu et al. (1999); Schram et al. (1998); Wise et al. (1999); Wu (1997a);
Yen (1994); Yen and Ho (2000); Zhang et al. (2002).

Application oriented:

There are also many papers that are focused on a particular application. Some
of them are Askari et al. (1999); Battaini and Dyke (1998); Blanke et al. (1998);
Bonivento et al. (2003b, 2001b,a); Ho and Yen (2001); Jonckheere and Lohsoon-
thorn (2000); Kim et al. (2001b); Li et al. (1999); Piug and Quevedo (2001); Mo-
hamed et al. (1997); Podder and Surkar (2001); Schdeier and Frank (1999); Somov
et al. (2002); Visinski et al. (1995); Liu et al. (2000); Gaspar et al. (2003). There are,
however, may others. For more references see Zhang and Jiang (2003); Astrom
et al. (2001).

Benchmark problems have also been proposed for testing and demonstrat-
ing the capabilities of different approaches for FDD and FTC. The most popular
are the ship propulsion system benchmark (Izadi-Zamanabadi and Blanke 1999),
the diesel actuator benchmark model (Blanke et al. 1995), the three-tank system
benchmark (Heiming and Lunze 1999; Astrom et al. 2001).

1.6 Scope of the thesis

The overview from the previous section shows that there are numerous publica-
tions in the field of FTC. Still there are certain topics that have not yet received
the required attention. As argued in the overview papers of Zhang and Jiang
(2003) and Patton (1997), one of the most important research topics that still
need to be considered in a FTCS design are the following:

(P1) how to deal with model and FDD uncertainties, and

(P2) how to deal with nonlinear systems.

As discussed in Section 1.4, real physical control systems are always nonlin-
ear. Moreover, it is not always the case that a linear model can be built up that
sufficiently accurately describes the dynamic behavior of the system in a wide
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range of operating conditions. Such linear models are usually only valid lo-
cally. They are obtained either by means of linearization of the nonlinear model
around a given operating point, or by means of data-driven model identification.
Even the resulting local linear model, however, could be imprecise due to not ex-
actly known (or time-varying) values of some physical parameters, linearization
errors, etc. The resulting mismatch between the model and real system is re-
ferred to as model uncertainty. Clearly, there is always some discrepancy beween
model and system, so that model uncertainty is always present! It is therefore im-
portant in the development of methods to FTC, when aimed at a general class of
systems, that model uncertainty is considered, i.e. that the controller is made
robust with respect to these uncertainties (see Figure 1.7).

When faults occur in an active FDD-based FTCS these need to be first de-
tected and diagnosed so that the controller could subsequently be reconfigured.
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Since no FDD scheme is perfect, another important aspect needs to be consid-
ered by the reconfiguration mechanism, namely how to deal with delays in the
detection and diagnosis. Figure 1.8 visualizes a detection process where the true
fault signal changes abruptly at the time instant of the fault occurrence. After
the fault occurrence it takes some time for a real-life FDD process to detect the
fault due to the fact that it needs to collect sufficient input-output data from the
process in order to make such a decision. In the visualization on Figure 1.8 it is
assumed that the FDD scheme is based on the direct estimation of a fault signal,
and that a fault detection flag is triggered when the estimated signal passes a
used-specified threshold. In the time interval between the fault occurrence and
the fault detection the reconfiguration mechanism is unaware of the fault and,
therefore, cannot initialize any reconfiguration of the controller. At the time of
the fault detection the reconfiguration mechanism becomes aware of the occur-
rence of the fault but it has no information about the exact magnitude. Finally,
some time after the fault detection comes the fault diagnosis so that a final re-
configuration can take place. The final estimate of the fault, however, can also
not be expected to perfectly match the true value of the fault due to measure-
ment noise, model uncertainty, etc. Therefore, it is important that such imper-
fections in terms of uncertainties and delays in the fault estimates are considered
in the design of the FTC.

Additionally, it might be useful for the reconfiguration mechanism to have
an idea about the size of the uncertainty in the fault estimates, should the FDD
scheme be capable of providing it. In fact the size of the FDD uncertainty is in
practice often time-varying. Indeed, as it can be seen from Figure 1.8, imme-
diately after the fault occurrence the fault estimates are rather imprecise due to
the lack of sufficient input-output measurement data. Gradually, as more data
becomes available from the system the estimates are refined, i.e. they become
more accurate and the uncertainty size decreases until it reaches its minimum
around the time of the fault diagnosis. This idea is pursued in the results in
Chapter 4 in this thesis.

The results presented in this thesis are mainly intended as an attempt to de-
velop methods for FTC design with a clear focus on problems (P1) and (P2) dis-
cussed in this section.

1.7 Outline of the thesis

The dynamics of a real-life physical system can be represented in state-space in
the following general form

S(pk) :







xk+1 = f(xk, uk, pk),
yk = h(xk, uk, pk),
x0 = x̂0,

(1.15)

where the vector xk ∈ X ⊆ R
n represents the state of the system S(pk), uk ∈ U ⊆

R
m+nξ represents the inputs to the system, yk ∈ R

p+nz denotes the outputs of
the system. At each time instant t the system S(pk) is parametrized by a (pos-
sibly unknown) parameter vector pk ∈ P ⊆ R

np . The vector pk may represent
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uncertain physical parameters in the system or system faults.

Nonlinear models of systems are in general inconvenient to work with due
to their complexity and due to the lack of a well-developed theory for analy-
sis and synthesis for general nonlinear models. The usual strategy to deal with
them is either by approximating them with more convenient models (e.g. by
means of blending of a set of local linear models as in the multi-model and in
the Fuzzy control theories) or by assuming certain structure (e.g. bilinear sys-
tems, Hammerstein-Wiener systems, linearity in the input, etc.).

In the multiple model approach the state space X is divided into N repre-

sentative and disjoint regions Xi, with
⋃N

i=1 Xi ≡ X , and in each region a point
(x(i), u(i)) ∈ Xi×U is chosen around which the nonlinear system S(pk) is approx-
imated by a linear model. Under the assumption that f(·), g(·) ∈ C1, the local
linear approximation Mi(pk) of the system S(pk) within the open ball neighbor-
hood

B(x(i), u(i))
.
=

{

(x, u) ∈ X × U :

∥
∥
∥
∥

[
x− x(i)

u− u(i)

]∥
∥
∥
∥

2

< ǫ

}

,

is called the pk-parametrized local linear model

Mi(pk) :







x
(i)
k+1 = Ai(pk)x

(i)
k + Bi(pk)uk + bi(pk),

y
(i)
k = Ci(pk)x

(i)
k + Di(pk)uk + ci(pk),

x
(i)
0 = x̄0,

with
Ai(pk)

.
= ∂xf(x(i), u(i), pk), Bi(pk)

.
= ∂uf(x(i), u(i), pk)

Ci(pk)
.
= ∂xh(x(i), u(i), pk), Di(pk)

.
= ∂uh(x(i), u(i), pk)

bi(pk)
.
= f(x(i), u(i), pk)−A(pk)x(i) −B(pk)u(i)

ci(pk)
.
= h(x(i), u(i), pk)− C(pk)x(i) −D(pk)u(i),

where ∂xf , ∂uf , ∂xh, and ∂uh represent the partial derivaties of the functions f(·)
and h(·) with respect to the vectors x and u.

Each local linear model Mi(pk) describes the behavior of the nonlinear sys-
tem within one regime Xi. A global approximation can be then formed by inter-
polating the local models using smooth interpolation functions φi(xk, uk, pk) > 0
that depend on the operating point (xk, uk) as well as on the parameter vector pk,
i.e.

ŷk =
N∑

i=1

µ
(i)
k y

(i)
k , with µ

(i)
k =

φi(xk, uk, pk)
∑N

i=1 φi(xk, uk, pk)
. (1.16)

Such approximations are widely used in the literature (see, for instance, Jo-
hansen and Foss (1995)). In fact it is shown in Johansen (1994) that, under cer-
tain smoothness properties, the nonlinear system S(pk) can be approximated to
any desired accuracy on a compact subset of the state and input spaces by means
of the representation (1.16) for a sufficiently large number of local models.

The multiple model representation (1.16) is both intuitive and attractive, and

is very much related to the Takagi-Sugeno fuzzy model, where the weights µ
(i)
k in

the linear combination of the local outputs are called degrees of membership.
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Suppose that the parameter vector pk is formed by two vectors, δk ∈∆ ⊆ R
nδ

and fk ∈ F ⊆ R
nf , so that

pk =

[
δk

fk

]

, (1.17)

where the vector δk is used to represent unknown, time-varying physical param-
eters of the system, and where the vector fk represents faults in the system. For
consistency in the dimensions it should hold that nδ + nf = np. While both
vectors are unknown, the fault vector fk is assumed to be estimated by an FDD

scheme, and its estimate is denoted here as f̂k. Let δ0 ∈∆ represent the nominal
values of the uncertain parameters, and f0 ∈ F represent the fault-free mode of
operation.

Let us collect all local models Mi(pk) into a model set

M(pk)
.
= {M1(pk),M2(pk), . . . ,MN (pk)} , (1.18)

and consider only one element of the set M(pk) which in view of (1.17) is de-
noted as M(δ, f). For simplicity in notations, the time symbol is omitted in
M(δ, f).

This thesis is focused on the following topics with the clear intention to ad-
dress the problems (P1) and (P2) defined on page 21:

• passive robust FTC: design one controller K that achieves some desired
performance for the model M(δ, f) for all possible uncertainties δk ∈ ∆
and faults fk ∈ F ,

• active robust FTC: given an estimate f̂ of the fault vector f by some FDD

scheme, design controller K(f̂) that achieves some desired performance
for the model M(δ, f) for all possible uncertainties δk ∈ ∆ and faults fk ∈
F ,

• active MM-based FTC: design a controller that achieves some desired per-
formance for the nonlinear system S(pk) for some fixed δk = δ0 ∈∆ (i.e. in
the case of no uncertainty) and for all possible faults fk ∈ F .

A natural continuation of this research activity is to combine the MM-based rep-
resentation of the nonlinear system with the passive and active approaches to
FTC in an attempt to deal with nonlinear systems with uncertainty as in the
(1.15). This is a topic for future research to be discussed in the concluding chap-
ter of this thesis.

We will next provide some more technical insight in the above-defined ob-
jectives. Suppose that a continuous map, that we call the performance index, is
given

J : Rnz×nξ 7→ R
+,

such that J(M) =∞ for any M 6∈ RH∞, whereRnz×nξ denotes the set of rational
transfer nz×nξ matrices, andRH∞ denotes the set of stable real rational transfer
matrices. Let M(δ, f) ∈ R(p+nz)×(m+nξ) be partitioned as follows

M(δ, f) =

[
M11(δ, f) M12(δ, f)
M21(δ, f) M22(δ, f)

]

,
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Figure 1.9: Partitioning of the model M(δ, f) and forming the closed-loop with
the controller K.

were, as depicted on Figure 1.9, the subsystem M22(δ, f) ∈ Rp×m gives the re-
lationships between the control actions and the measured output signals, and
the subsystem M11(δ, f) ∈ Rnz×nξ describes the relationships between all ex-
ogenous inputs (such as noises, disturbances, reference signals) and the regu-
lated (controlled) outputs that are related to the performance of the system (e.g.
tracking errors). The feedback interconnection of the model M(δ, f) with some
controller K ∈ Rm×p is represented by the lower linear fractional transformation

FL(M(δ, f),K)
.
= M11(δ, f) + M12(δ, f)K(I −M22(δ, f)K)−1M21(δ, f).

For a fixed controller K, the performance of the resulting closed-loop is there-
fore represented by J(FL(M(δ, f),K)).

Passive Fault-Tolerant Control

The passive robust FTC problem is then defined as the following optimization
problem

Passive FTC:
KP = arg min

K
sup

δ ∈ ∆

f ∈ F

J(FL(M(δ, f),K)). (1.19)

In this way a controller needs to be found that minimizes the worst-case perfor-
mance over all possible values for the uncertainty vector δ and the fault vector f .
This problem is considered in Chapters 2 and 3 (see Figure 1.10) where methods
are developed for robust controller design in the presence of structured uncer-
tainty.

In practise, two main difficulties arise with the optimization problem (1.19),
both being related to convexity. In the case when the state vector xk is directly
measured (or, equivalently, when yk = xk), the optimization problem (1.19) is
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convex in the controller parameters for many standard performance indexes
(e.g. J(·) = ‖·‖2, J(·) = ‖·‖∞, etc.) provided that the set {M(δ, f) : δ ∈∆, f ∈ F}
is a convex polytope. In such cases (1.19) can be represented as a linear matrix
inequality (LMI) optimization problem, for which there exist very efficient and
computationally fast solvers. If M(δ, f) is not a convex set, however, the orig-
inal problem (1.19) is also nonconvex and the LMI solvers cannot be used. A
“brute force” way to deal with this problem is to embed the set M(δ, f) into a
convex set. This, however, introduces unnecessary conservatism that for some
problems might be unacceptable or undesirable.

In order to deal with such problems a probabilistic design approach is pro-
posed in Chapter 2 that is basically applicable for any bounded set M(δ, f), as
long as (1.19) can be rewritten as a robust LMI optimization problem (as for most
state-feedback controller design problems). This method is basically an itera-
tive algorithm that at each iteration generates a random uncertainty sample for
which an ellipsoid is computed with the properties that (a) it contains the solu-
tion set (the set of all solutions to the robust LMI problem), (b) it has a smaller
volume than the ellipsoid at the previous iteration. The approach is proved to
converge to the solution set in a finite number of iterations with probability one.

In the output-feedback case the probabilistic method of Chapter 2 cannot
be directly applied because the optimization problem (1.19) cannot be rewritten
as a robust LMI optimization problem. The reason for that is that the output-
feedback problem in the presence of uncertainty is a bilinear matrix inequal-
ity (BMI) problem, and BMI problems are not convex. Actually, such problems
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have been shown to be NP-hard meaning that they cannot be expected to have
polynomial time complexity. A local BMI optimization approach is developed in
Chapter 3 that is guaranteed to converge to a local optimum of the cost function
J(FL(M(δ, f),K)).

Active Fault-Tolerant Control

Whenever an estimate f̂ of the fault vector f is provided by some FDD scheme,
and if the imprecision in this estimate is described by and additional uncertainty

∆f ∈ ∆f so that f = (I + ∆f )f̂ , the active robust FTC can be defined as the
problem:

given f = (I + ∆f )f̂ , evaluate

K̃A(f̂) = arg min
K(f̂)

sup
δ ∈ ∆

∆f ∈ ∆f

J(FL(M(δ, f),K(f̂))). (1.20)

The resulting controller would, in this way, be scheduled by the fault estimate f̂
and will be robust with respect to uncertainties both in the model M(δ, f) and in

the estimate of f . Clearly, the way in which the scheduling parameter f̂ enters
the controller needs to be assumed before one could proceed with the optimiza-
tion.

Above, ∆f represents the FDD uncertainty that, as already discussed, usu-
ally increases after the occurrence of a fault, and then subsequently decreases
as the FDD scheme refines the estimate based on the availability of more input-
output data from the impaired system. As a result the “maximal uncertainty”
is only active for some relatively short periods of time compared with the dura-
tion of the operation of the system. Therefore, assuming a maximal uncertainty
size during the complete operation might be overly conservative since the robust
controller practically trades off performance for increased robustness to uncer-
tainties. Hence, it is interesting to allow the controller to be able to deal with
time-varying size of the FDD uncertainty. To this end, however, the FDD scheme
should be capable of providing not only an estimate of the fault but also an up-
per bound on the size of the uncertainty in this estimate (see the dashed line in
Figure 1.7 on page 22). The size of the FDD uncertainty might, for instance, be

represented by a scalar γf (k) such that fk = (I + γf (k)∆̄f )f̂k with ‖∆̄f‖2 ≤ 1. In
this way the size of the uncertainty set is allowed to vary with time. In fact γf (k)
might be a vector to make it possible to assign different uncertainty sizes on the
different entries of the fault vector fk. Therefore, provided that the FDD scheme
produces (f̂k, γf (k)) at each time instant, the achievable performance in (1.20)
may further be improved by computing the controller by solving the following
optimization problem

Active FTC:

given f = (I + γf ∆̄f )f̂ , evaluate

KA(f̂ , γf ) = arg min
K(f̂ ,γf )

sup
δ ∈ ∆

∆̄f ∈ ∆̄f

γf ≤ γf ≤ γ̄f

J(FL(M(δ, f),K(f̂ , γf ))), (1.21)
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where ∆̄f = {∆ ∈ ∆f : ‖∆‖ ≤ 1}, and where the vectors {γf , γ̄f}, assumed

known a-priori, define a lower and an upper bound on the possible uncertainty
sizes. In this way methods can be developed for the design of robust active FTC
for one uncertain local model M(δ, f). The robust active FTC design problem is
considered in Chapters 4 and 5. The approach from Chapter 4 is subsequently
illustrated on a experimental setup with a brushless DC motor (BDCM) in Chap-
ter 6 (see Figure 1.10 on page 27).

Chapter 4 is focused on the development robust active FTC approaches based
on LPV controller design. Two approaches are proposed. The first LPV approach
can deal with multiplicative sensor and actuator faults and consists of the on-
line design of a set of parameter-varying robust output-feedback controllers, in
which the only scheduling parameter is the size γf (k) of the FDI uncertainty. A
set of such predesigned LPV controllers is built up, each controller correspond-
ing to a suitably defined fault scenario. After a fault has been diagnosed the re-
configured controller is taken as a scaled version of one of the predesigned con-
trollers. Although a finite set of controllers are initially designed, the reconfigu-
ration scheme deals with an arbitrary combination of multiplicative sensor and
actuator faults as long as the system remains stabilizable and detectable. This
approach is based on LMIs that are derived by neglecting the structure of the un-
certainty. In order to circumvent the resulting conservatism, another approach
is proposed by making use of the probabilistic method developed in Chapter 2.
This second approach to robust output-feedback FTC has the following advan-

tages: (a) it is scheduled by both the fault estimates f̂k and the size γf (k) of its
uncertainty, (b) it deals with structured uncertainty, (c) it is applicable to not
only sensor and actuator faults, but also to component faults. A disadvantage is
that this controller is originally developed for the state-feedback case due to the
non-convexity of the output-feedback problem. However, the method is further
extended by means of a two-step procedure, borrowed from the BMI approach
in Chapter 3, that allows to consider the output-feedback case as well.

In Chapter 5 a finite-horizon output-feedback MPC design approach is pre-
sented that is robust with respect to model and FDD uncertainties. The ap-
proach consists in a combination of a Kalman filter and a finite-horizon MPC
into one min-max (worst-case) optimization problem, that is solved at each it-
eration by making use of the probabilistic method of Chapter 2. This method
has the advantage that it deals with the robust output-feedback problem directly
without having to solve BMI optimization problems. A disadvantage is its com-
putational demand and the lack of guaranteed closed-loop stability.

We note here that the LPV controllers are very suitable for online implemen-
tation due to the fact that the design is performed completely off-line. This re-
sults in limited on-line computations for controller re-configuration after the
occurrence of a fault. The LPV approach based on the probabilistic design is
tested in Chapter 6 on a real-life experimental setup consisting of a brushless
DC motor. The FTC approach is combined there with an FDD scheme for the
detection and estimation of parameter and sensor faults.
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Dealing with Nonlinear Systems

The passive and active approaches to FTC discussed above are focused on only
one local linear model in the presence of uncertainty in both the model descrip-
tion and in the FDD scheme. The question of how to extend this to deal with the
complete multiple model representation of a nonlinear system is much more
difficult and is in this thesis only partially addressed. Specifically, in the case of
no uncertainty (i.e. δk = δ0 = const) a method is developed in Chapter 7 (see
Figure 1.10 on page 27) that can be used for control of nonlinear systems rep-
resented by multiple local models. The starting point is the construction of a
model setM that contains either local linear approximations of a nonlinear sys-
tem or models representing faulty modes of operation of a (linear) system. In this
way the elements of the model set are time-invariant, which is a special case of
the more general representation in (1.18) on page 25. The method is a combina-
tion of a multiple model estimator that provides local and global state-estimates
as well as estimates of the weights µ̂i. They are then used to parametrize an MPC.
The multiple model estimator consists of a bank of Kalman filters, one for each
local model. The Kalman filters are independently designed from the MPC. In
the case when uncertainty is present in the system (and, therefore, also in the
local models), however, the design of the state observer and the controller can
no longer be executed separately due to the fact that the well known separation
principle no longer holds. It therefore remains for future research to investigate
how to deal with uncertainties in the elements of the model setM.

1.8 Organization of the thesis

This thesis is organized as follows.
Chapters 2 and 3 propose methods for achieving robustness with respect

to system faults and model uncertainties by means of passive FTC. The state-
feedback case is first considered in a probabilistic design framework in Chapter
2 for a very general class of model uncertainties and faults. In Chapter 3 the
output-feedback case is considered by proposing an approach based on nonlin-
ear local BMI optimization for systems with polytopic uncertainty.

Chapters 4–6 present algorithms for active FTC for linear systems in the pres-
ence of model and FDD uncertainty. In Chapter 4 approaches are developed for
the design of linear parameter-varying FTC that are scheduled by both the fault
estimates as well as the sizes of their uncertainties. In Chapter 5 a finite-horizon
output-feedback MPC design approach is presented that consists in a combina-
tion of a Kalman filter and a finite-horizon MPC into one robust least squares
optimization problem, in this way circumventing the need for solving noncon-
vex BMI problems. The methods from Chapter 4 are tested in Chapter 6 on a
real-life experimental setup consisting of a brushless DC motor.

In Chapter 7 an approach is presented that can be used for control of non-
linear systems represented by multiple local models in the case when no uncer-
tainty is present into the model description. Finally, Chapter 8 gives the conclu-
sions and recommendations.

The relations between the chapters are visualized in Figure 1.10 on page 27.
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1.9 Contributions

The results presented in this thesis have been published or submitted for pub-
lication elsewhere. Each subsequent chapter consist of an adapted version of
one or more such publications. In this setup every chapter might be regarded
as stand-alone although there is some relationship between the chapters as dis-
cussed in Section 1.7. An attempt is made to keep the notation consistent through-
out the thesis; still to prevent any confusion, the notation is sometimes explained
at the beginning of the chapter. All references are provided at the end of the the-
sis. A summary of the contributions and their relations with the chapters in this
thesis is provided below.
Chapter 2 The probabilistic ellipsoid algorithm for solving robust LMI problems
has been published in

S. Kanev, B. De Schutter and M. Verhaegen,
An Ellipsoid Algorithm for Probabilistic Robust Controller Design,
Systems & Control Letters, 49(5), 2003, pp. 365–375.

S. Kanev, B. De Schutter and M. Verhaegen,
The Ellipsoid Algorithm for Probabilistic Robust Controller Design,
Proceedings of the 41th IEEE Conference on Decision and Control (CDC’02),
Las Vegas, Nevada, USA, 2002.

Chapter 3 This chapter presents the BMI optimization algorithm for robust output-
feedback controller design for systems with polytopic uncertainties. It is based
on the following publications:

S. Kanev, C. Scherer, M. Verhaegen and B. De Schutter,
Robust Output-Feedback Controller Design via Local BMI Optimization,
accepted for publication in Automatica, 2003.

S. Kanev, C. Scherer, M. Verhaegen and B. De Schutter,
A BMI Optimization Approach to Robust Output-Feedback Control,
to appear in Proceedings of the 41th IEEE Conference on Decision and Control (CDC’03),
Maui, Hawaii, USA, 2003.

Chapter 4 The LPV-based approaches to robust active FTC, presented in this
chapter, are based on

S. Kanev and M. Verhaegen,
Controller Reconfiguration in the Presence of Uncertainty in the FDI,
Proceedings of the 5th Symposium on Fault Detection, Supervision and Safety for
Technical Processes (SAFEPROCESS’2003), Washington, D.C., USA, 2003.

S. Kanev and M. Verhaegen,
Combined FDD and Robust Active FTC for a Brushless DC Motor,
submitted to Control Engineering Practice, 2003.

Chapter 5 The approach to robust output-feedback MPC from this chapter can
be found in

S. Kanev and M. Verhaegen,
Robust Output-Feedback Integral MPC: A Probabilistic Approach,
submitted to Automatica, 2003.
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S. Kanev and M. Verhaegen,
Robust Output-Feedback Integral MPC: A Probabilistic Approach,
to appear in Proceedings of the 41th IEEE Conference on Decision and Control (CDC’03),
Maui, Hawaii, USA, 2003.

Chapter 6 This chapter presents experimental results obtained on the BMDC
experimental setup. It is based on the following application-oriented paper

S. Kanev and M. Verhaegen,
Combined FDD and Robust Active FTC for a Brushless DC Motor,
submitted to Control Engineering Practise, 2003.

Chapter 7 The multiple model approach based on combination of the IMM es-
timator and an MPC presented in this chapter has appeared in

S. Kanev and M. Verhaegen,
Controller Reconfiguration for Non-Linear Systems,
Control Engineering Practice, 8(11), 2000, pp. 1223–1235.

In addition, the following publications were also written during my period as
a Ph.D. student:

S. Kanev and M. Verhaegen,
A Bank of Reconfigurable LQG Controllers for Linear Systems Subjected to Failures,
Proceedings of the 39th IEEE Conference on Decision and Control (CDC’00), Sydney,
Australia, 2000.

S. Kanev and M. Verhaegen and G. Nijsse,
A Method for the Design of Fault-Tolerant Systems in Case of Sensor and Actuator
Faults,
Proceedings of the 6th European Control Conference (ECC’01), Porto, Portugal, 2001.

S. Kanev and M. Verhaegen,
An Approach to the Isolation of Sensor and Actuator Faults Based on Subspace
Identification,
ESA Workshop on “On-Board Autonomy”, Noordwijk, The Netherlands, 2001.

S. Kanev and M. Verhaegen,
Reconfigurable Robust Fault-Tolerant Control and State Estimation,
Proceedings of the 15th Triennial World Congress of IFAC (b’02), Barcelona, Spain,
2002.

S. Mesic, V. Verdult, M. Verhaegen and S. Kanev,
Estimation and Robustness Analysis of Actuator Faults Based on Kalman Filtering,
Proceedings of the 5th Symposium on Fault Detection, Supervision and Safety for
Technical Processes (SAFEPROCESS’2003), Washington, D.C., USA, 2003.

V. Verdult, S. Kanev, J. Breeman and M. Verhaegen,
Estimating Multiple Sensor and Actuator Scaling Faults Using Subspace Identifica-
tion,
Proceedings of the 5th Symposium on Fault Detection, Supervision and Safety for
Technical Processes (SAFEPROCESS’2003), Washington, D.C., USA, 2003.



2
Probabilistic Approach to
Passive State-Feedback FTC

In the introductory Chapter 1 there were two main classes of FTC approaches
that were discussed, namely passive and active methods. Passive approaches are
off-line methods to FTC that are based on robust controller design algorithms,
i.e. a controller needs to be designed that is insensitive to some preselected class
of anticipated system faults, viewed as uncertainties. Such passive FTC methods
are suitable in the time interval between the detection of a fault and its diagnosis,
or in cases when no FDD scheme is present. After the fault has been diagnosed,
controller reconfiguration can take place to further improve the performance of
the faulty closed-loop system.
In this chapter a new probabilistic approach is proposed that is applicable to any
robust controller/filter design problem that is representable as an LMI problem.
Given an initial ellipsoid that contains the solution set, the approach proposed
here iteratively generates a sequence of ellipsoids with decreasing volumes, all
containing the solution set. A method for finding an initial ellipsoid is also given.
The proposed approach is illustrated on a real-life diesel actuator benchmark
model with real parametric uncertainty, for which a H2 robust state-feedback
controller is designed.

33
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2.1 Introduction

Recently, a new approach for probabilistic design of LQ regulators was proposed
in the literature (Polyak and Tempo 2001), to which we will refer to as the Sub-
gradient Iteration Algorithm (SIA), which was later on extended to deal with gen-
eral robust LMIs (Calafiore and Polyak 2001). The main advantage of this ap-
proach over the existing deterministic approaches to robust controller design
is that it can handle very general uncertainty structures, where the uncertainty
can enter the system in any, possibly non-linear, fashion. In addition to that,
this approach does not need to solve simultaneously a number of LMIs, whose
dimension grows exponentially with the number of uncertain parameters, but
rather solves one LMI at each iteration. This turns out to be a very powerful
feature when one observes that even for ten real uncertain parameters most of
the existing LMI solvers will be unable to handle the resulting number of LMIs.
For an overview of the literature on probabilistic design the reader is referred
to (Calafiore and Polyak 2001; Polyak and Tempo 2001; Stengel and Ray 1991;
Tempo and Dabbene 2001; Ugrinovskii 2001; Vidyasagar 1998; Öhrn et al. 1995;
Chen and Zhou 1998; Fujisaki et al. 2001), and the references therein.

While enjoying these nice properties, the major drawback of the SIA is that
the radius of a ball contained in the solution set (the set of all feasible solutions
to the problem) is required to be known a-priori. This radius is used at each iter-
ation of the SIA to compute the size of the step which will be made in the direc-
tion of the anti-gradient of a suitably defined convex function. It will be shown
later in this chapter that not knowing such a radius r can result in the SIA failing
to find a feasible solution. Knowing r, on the other hand, guarantees that the al-
gorithm will terminate in a feasible solution in a finite number of iterations with
probability one, provided that the solution set has a non-empty interior (Polyak
and Tempo 2001; Calafiore and Polyak 2001). The purpose of this chapter is to
develop a new probabilistic approach that no longer necessitates the knowledge
of r, while keeping the above-mentioned advantages and the convergence prop-
erty of SIA.

To circumvent the lack of knowledge of r, it is proposed in (Calafiore and
Polyak 2001; Kushner and Yin 1997) that one can substitute this number with
a sequence {ǫs} such that ǫs > 0, ǫ → 0 and

∑∞
s=0 ǫs = ∞. While this indeed

releases the assumption that the radius r is known, it increases the number of
iterations necessary to arrive at a feasible solution. In addition to that the choice
of an appropriate sequence {ǫs} remains an open question.

An interesting result concerning the algorithm in (Calafiore and Polyak 2001)
appeared recently in (Oishi and Kimura 2001), where it is shown that the ex-
pected time to achieve a solution is infinite. In (Oishi and Kimura 2001) the
authors also propose a slight modification of the approach from (Calafiore and
Polyak 2001) that results in an algorithm with finite expected achievement time.
Yet, this modified algorithm suffers from the “curse of dimensionality”, i.e. the
expected achievement time grows (faster than) exponentially with the number
of uncertain parameters.

The approach proposed in this chapter is based on the Ellipsoid Algorithm
(EA). The algorithm can be used for finding exact or approximate solutions to
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LMI optimization problems, like those arising from many (robust) controller and
filter design problems. The uncertainty ∆ is assumed to be bounded in the struc-
tured uncertainty set ∆, and to be coupled with a probability density function
f∆(∆). It is further assumed that it is possible to generate samples of ∆ accord-
ing to f∆(∆). The interested reader is referred to (Calafiore et al. 2000) for more
details on the available algorithms for uncertainty generation. Then, similarly to
the SIA, at each iteration of the EA two steps are performed. In the first step a
random uncertainty sample ∆(i) ∈∆ is generated according to the given proba-
bility density function f∆(∆). With this generated uncertainty a suitably defined
convex function is parametrized so that at the second step of the algorithm an
ellipsoid is computed, in which the solution set is guaranteed to lie. The EA thus
produces a sequence of ellipsoids with decreasing volumes, all containing the
solution set. Using some existing facts, and provided that the solution set has a
non-empty interior, it will be established that this algorithm converges to a feasi-
ble solution in a finite number of iterations with probability one. To initialize the
algorithm, a method is presented for obtaining an initial ellipsoid that contains
the solution set. It is also shown that even if the solution set has a zero volume,
the EA converges to the solution set when the iteration number tends to infinity,
a property not possessed by the SIA.

The remaining part of the chapter is organized as follows. In the next Section
the problem is formulated, and the SIA is summarized. In Section 2.3 the EA is
developed and its convergence is established. In Section 2.4 a possible method
for finding an initial ellipsoid containing the solution set is presented. The com-
plete EA method is illustrated in Section 2.6 on the design of a robust H2 state-
feedback controller for a real-life diesel actuator benchmark model, taken from
(Blanke et al. 1995). Finally, Section 2.7 concludes the chapter.

2.2 Preliminaries

2.2.1 Notation and Problem Formulation

The notation used in the chapter is as follows. In denotes the identity matrix of
dimension n × n, In×m is a matrix of dimension n × m with ones on its main
diagonal. The dimensions will often be omitted in cases where they can be im-
plied from the context. For two matrices A and B of appropriate dimension,
〈A,B〉

.
= trace(AT B). ‖.‖F denotes the Frobenius norm, defined for an n × m

matrix A with elements aij as

‖A‖2F
.
=

n∑

i=1

m∑

j=1

a2
ij .

The Frobenius norm has the following useful properties, needed in the sequel,

‖A‖2F = 〈A,A〉 =

min{n,m}
∑

i=1

σ2
i (A) =

n∑

i=1

λi(A
T A), (2.1)
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where σi(A) are the singular values of the matrix A and λi(A
T A) are the eigen-

values of the matrix (AT A). In addition to that, for any two matrices A and B of
equal dimensions it holds that

‖A + B‖2F = ‖A‖2F + 2〈A,B〉+ ‖B‖2F . (2.2)

A > 0 (A ≥ 0) means that A is positive definite (positive semi-definite). We also
introduce the notation ‖x‖2Q

.
= xT Qx for x ∈ R

n and Q ∈ R
n×n with Q ≥ 0,

which should not be mistaken with the standard notation for the vector p-norm
(‖x‖p). In LMIs, the symbols • will be used to indicate entries readily implied
from symmetry. A vector of dimension n with all elements equal to zero will be
denoted as 0n. Futher, the volume of a closed set A is denoted as vol(A).

Let C+n denote the cone of symmetric non-negative definite n-by-n matrices,
i.e.

C+n
.
= {A ∈ R

n×n : A = AT , A ≥ 0}.

For a symmetric matrix A we define the projection onto C+
n as follows

Π+A
.
= arg min

X∈C+
n

‖A−X‖F . (2.3)

Similarly, denoting

C−n
.
= {A ∈ R

n×n : A = AT , A ≤ 0},

then the projection onto the cone of symmetric negative-definite matrices is de-
fined as

Π−A
.
= arg min

X∈C−
n

‖A−X‖F . (2.4)

Note that these two projections are uniquely defined. They have the following
properties Calafiore and Polyak (2001).

Lemma 2.1 (Properties of the projection) For a symmetric matrix A, the follow-
ing properties hold

(P1) Π+A + Π−A = A.

(P2) 〈Π+A,Π−A〉 = 0.

(P3) Let A = UΛUT , where U is an orthogonal matrix containing the eigenvectors
of A, and Λ is a diagonal matrix with the eigenvalues λi, i = 1, . . . , n, of A
appearing on its diagonal. Then

Π+A = Udiag{λ+
1 , . . . , λ+

n }U
T ,

with λ+
i

.
= max(0, λi), i = 1, . . . , n. Equivalently,

Π−A = Udiag{λ−
1 , . . . , λ−

n }U
T ,

with λ−
i

.
= min(0, λi), i = 1, . . . , n.

(P4) Π+A and Π−A are continuous in A.
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In this chapter we consider the following uncertain transfer function

M∆(σ) :

[
u
ξ

]

7→

[
z
y

]

,

defined as

M∆(σ) =

[
C∆

z

C∆
y

]

(σIn + A∆)−1
[

B∆
u B∆

ξ

]
+

[
D∆

zu D∆
zξ

D∆
yu D∆

yξ

]

. (2.5)

where A∆ ∈ R
n×n, B∆

u ∈ R
n×m, B∆

ξ ∈ R
n×nξ , C∆

z ∈ R
nz×n, C∆

y ∈ R
p×n,

D∆
zu ∈ R

nz×m, D∆
zξ ∈ R

nz×nξ , D∆
yu ∈ R

p×m, D∆
yξ ∈ R

p×nξ , u ∈ R
m is the con-

trol action, y ∈ R
p is the measured output, z ∈ R

nz is the controlled output of
the system, and ξ ∈ R

nξ is the disturbance to the system, and where the symbol σ
represents the s-operator (i.e. the time-derivative operator) for continuous-time
systems, and the z-operator (i.e. the shift operator) for discrete-time systems.
The uncertainty ∆ is assumed to be such that it

1. belongs to the uncertainty set ∆, and

2. is coupled with some probability density function f∆(∆) inside the uncer-
tainty set ∆.

There are further no restrictions on ∆ besides that the elements of the state-
space matrices of the system should not become unbounded, i.e. it should hold
that ∥

∥
∥
∥
∥
∥





A∆ B∆
ξ B∆

u

C∆
z D∆

zξ D∆
zu

C∆
y D∆

yξ D∆
yu





∥
∥
∥
∥
∥
∥

F

<∞, ∀∆ ∈∆. (2.6)

Remark 2.1 Whenever the uncertainty is fully deterministic or no a-priori infor-
mation is available about its statistical properties, uniform distribution could be
selected, i.e.

f∆(∆) =
1

vol(∆)
, ∀∆ ∈∆.

The following mild assumptions need to be imposed.

Assumption 2.1 It is assumed that random samples of ∆ can be generated inside
∆ with the specified probability distribution f∆(∆).

For certain probability density functions there exist algorithms in the literature
for generation of random samples of ∆. For instance, in Calafiore et al. (1999)
the authors consider the problem of generations of (real and complex) vectors
samples uniformly in the ball B(r) = {x : ‖x‖p ≤ r}. This is consequently
extended for the matrix case, but only the 1-norm and the∞-norm are consid-
ered. The important case of matrix 2-norm is considered later on in Calafiore
et al. (2000). The reader is referred to Calafiore et al. (2000, 1999) for more details
on the available algorithms for uncertainty generation.
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In Chapter 1 the optimization problem (1.19) on page 26 was defined for
achieving passive FTC. In this optimization problem a cost function J(·) needs
to be optimized for the worst-case model uncertainty δ and the worst case fault
f . Both f and δ are considered in this chapter as one uncertainty

∆ =

[
δ
f

]

,

so that problem (1.19) becomes equivalent to the following optimization prob-
lem

(PO) : K∗ = arg min
K

max
∆∈∆

J(G∆(σ),K). (2.7)

Furthermore, the problem (PO) is equivalent to the minimization of a scalar γ >
0 over γ and K subject to the constraint

(PF ) : max
∆∈∆

J(G∆(σ),K) ≤ γ. (2.8)

For a fixed γ, the problem (PF ) defined in equation (2.8) is called a feasibility
problem. When there is a method that can solve the feasibility problem (PF ),
then solving the original optimization problem (PO) only requires a bisection
algorithm on γ where at each iteration (PF ) is solved for fixed γ. For that reason
we consider now the feasibility problem (PF ) only.

The feasibility problem (2.8) is a problem of robust controller design. Many
controller and filter design problems are known to be representable in terms of
LMIs (Boyd et al. 1994) in the form

Control Problem: Find a feasible solution to the LMI
Uγ(x,∆) ≤ 0, x ∈ X ⊆ R

N , for all ∆ ∈∆,
(2.9)

where Uγ(x,∆) = UT
γ (x,∆) ∈ R

q×q is affine in the vector of variables x, and
where the setX is assumed to be convex. The controller is then parametrized by
any solution x∗ to (2.9).

Remark 2.2 Note that the vector x in this chapter represents the unknown vari-
ables in the control problem given in (2.9). It should not be mistaken with the
notation for the state vector used in other chapters of this thesis.

It should be noted here that when dealing with uncertain systems in the gen-
eral output-feedback case the feasibility problem (PF ) cannot be represented as
a robust LMI problem, but as a BMI problem1. Such BMI problems are non-
convex, NP hard problems that cannot be treated by the approaches discussed
in this chapter. BMI problems are discussed in the next chapter. In contrast to
the output-feedback, in the state-feedback case most design problems (includ-
ing LQR,H2,H∞, pole-placement, etc.) can be written in the form (2.9).

To motivate the probabilistic framework used in this chapter we note that the
deterministic methods to robust LMI problems of the form (2.9) usually assume
that the set {Uγ(x̄,∆) : ∆ ∈ ∆} is a convex polytope for any fixed x̄ ∈ X . This

1When no uncertainty is present in the model description many output-feedback problems can
also be equivalently transformed to LMIs.
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makes it possible to represent the infinite set of matrix inequalities Uγ(x,∆) ≤ 0

by a finite system of LMIs U
(i)
γ (x) ≤ 0, i = 1, 2, . . . ,K, defined on the vertexes of

the polytope, i.e.

Uγ(x,∆) ≤ 0 ⇐⇒







U
(1)
γ (x) ≤ 0

U
(2)
γ (x) ≤ 0

...

U
(K)
γ (x) ≤ 0

There are very efficient and fast LMI solvers nowadays for solving such systems
of LMIs (Gahinet et al. 1995).

Whenever the set {Uγ(x̄,∆) : ∆ ∈∆} is not a convex polytope, however, this
approach can only be applied after accepting a certain amount of conservatism
by over-bounding the set by a convex polytope. To avoid such conservatism the
robust LMI problem is addressed here in a probabilistic framework.

The set of all feasible solutions to the control problem is called the solution
set, and is denoted as

Sγ
.
= {x ∈ X : Uγ(x,∆) ≤ 0, ∀∆ ∈∆}. (2.10)

The goal is the development of an iterative algorithm capable of finding a so-
lution to the control problem defined (2.9). To this end the following cost func-
tion is defined

vγ(x,∆)
.
= ‖Π+[Uγ(x,∆)]‖2F ≥ 0, (2.11)

which is non-negative for any x ∈ X and ∆ ∈ ∆. The usefulness of the so-
defined function vγ(x,∆) stems from the following fact.

Lemma 2.2 For a given pair (x̄, ∆̄) ∈ X ×∆ it holds that Uγ(x̄, ∆̄) ∈ C−q if and

only if vγ(x̄, ∆̄) = 0.

Proof:
Using the third property in Lemma 2.1 on page 36 we note that Uγ(x̄, ∆̄) ∈ C−q holds
if and only if

Π−[Uγ(x̄, ∆̄)] = Uγ(x̄, ∆̄)

Making use of the first property in Lemma 2.1 we then observe that

Π+[Uγ(x̄, ∆̄)] = 0,

or equivalently, that vγ(x̄, ∆̄) = 0. �

Using the result from Lemma 2.2 it follows that

{x ∈ X : vγ(x,∆) = 0, ∀∆ ∈∆} ≡ Sγ

holds. In other words vγ(x,∆) = 0 for all ∆ ∈∆ if and only if x ∈ Sγ .
In this way the initial problem is reformulated to the following optimization

problem
x∗ = arg min

x∈X
sup
∆∈∆

vγ(x,∆). (2.12)
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In the algorithms presented in this chapter the gradient of the function vγ(·, ·)
will be needed. In order to derive an analytic expression for it, we first note that
since Uγ(x,∆) is affine in x it can be written in the form

Uγ(x,∆) = Uγ,0(∆) +

N∑

i=1

Uγ,i(∆)xi,

where xi is the i-th element of the vector x, and where

Uγ,0(∆) = Uγ(0N ,∆),
Uγ,i(∆) = Uγ(ei,∆)− Uγ,0(∆), i = 1, 2, . . . , N,
eT
i =

[
0T

i−1, 1, 0T
N−i

]
(2.13)

Then the following result holds.

Lemma 2.3 The function vγ(x,∆), defined in equation (2.11), is convex and dif-
ferentiable in x and its gradient is given by

∇vγ(x,∆) = 2






trace
(
Uγ,1(∆)Π+[Uγ(x,∆)]

)

...
trace

(
Uγ,N (∆)Π+[Uγ(x,∆)]

)




 (2.14)

Proof: By using the properties of the projection in Lemma 2.1 we observe that
for some symmetric matrices R and ∆R it can be written that

‖Π+[R + ∆R]‖2F
(P1)
= ‖R + ∆R−Π−[R + ∆R]‖2F

(P1)
= ‖Π+R + Π−R + ∆R−Π−[R + ∆R]‖2F

(2.2)
= ‖Π+R‖2F + 2

〈
Π+R,∆R

〉
+ 2

〈
Π+R,Π−R

〉

︸ ︷︷ ︸

=0

+‖Π−R + ∆R−Π−[R + ∆R]‖2F
+2
〈
Π+R,−Π−[R + ∆R]

〉

︸ ︷︷ ︸

≥0
(P2),(P3)
≥ ‖Π+R‖2F +

〈
2Π+R,∆R

〉

In addition to that, noting that from (2.4) on page 36 it follows that

‖A−Π+A‖2F = min
X∈C−

n

‖A−X‖2F , (2.15)

we can write that

‖Π+[R + ∆R]‖2F
(P1)
= ‖R + ∆R−Π−[R + ∆R]‖2F

(2.15)
= min

S∈C−
n

‖R + ∆R− S‖2F

≤ ‖R + ∆R−Π−R‖2F
(P1)
= ‖Π+R + ∆R‖2F

(2.2)
= ‖Π+R‖2F +

〈
2Π+R,∆R

〉
+ ‖∆R‖2F .
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It thus follows that

‖Π+[R + ∆R]‖2F = ‖Π+R‖2F +
〈
2Π+R,∆R

〉
+ O(‖∆R‖2F ).

Now, substitute R = Uγ(x,∆) and ∆R =
∑N

i=1 Uγ,i(∆)∆xi to obtain

vγ(x + ∆x,∆) ≥ vγ(x,∆) +
N∑

i=1

〈
2Π+[Uγ(x,∆)]Uγ,i(∆),∆xi

〉
(2.16)

vγ(x + ∆x,∆)

= vγ(x,∆) +

N∑

i=1

〈
2Π+[Uγ(x,∆)], Uγ,i(∆)

〉
∆xi + O(‖∆x‖22),

(2.17)

The convexity follows from inequality (2.16), while the differentiability – from
equation (2.17). The gradient of vγ(x,∆) is then given by (2.14). �

Now that the gradient of the function vγ(x,∆) is derived analytically we are
ready to proceed to the probabilistic approaches to controller design.

2.2.2 The Subgradient Iteration Algorithm

For finding a feasible solution to the optimization problem (2.12), an algorithm
was proposed in Calafiore and Polyak (2001). It originated in Polyak and Tempo
(2001), where it was developed specifically for the design of a state-feedback LQ
regulator. We will refer to this algorithm as the Subgradient Iteration Algorithm
due to the fact that it is based on subgradient iterations.

Define the operator ΠX : R
N 7→ X as follows

ΠXx
.
= arg min

y∈X
‖x− y‖2.

Further, the following assumption is imposed for the SIA.

Assumption 2.2 (Strong Feasibility Condition) A scalar r > 0 is known for which
there exists x∗ ∈ X such that

B(x)
.
= {x ∈ X : ‖x− x∗‖ ≤ r} ⊆ Sγ .

Assumption 2.2 implies that the solution set Sγ has a non-empty interior, and
that a radius r of a ball contained in Sγ is known. This is often is a rather restric-
tive assumption due to the fact that usually no a-priori information about the
solution set Sγ is available. This assumption will be released in the next section
where the newly proposed algorithm is presented.

The SIA is then summarized in Algorithm 2.1 (see Polyak and Tempo (2001);
Calafiore and Polyak (2001) for more details). As an initial condition x(0) to the
algorithm can be selected any element of the set X . As a stopping criterion one
may, for instance, select the condition that for a given number of iterations L
(usually L ≫ 1) the step-size µi−k = 0 (or equivalently vγ(x(i−k),∆(i−k)) = 0 )
for k = 0, 1, . . . , L. A “weaker” stopping condition could be that the vector x(i)
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Algorithm 2.1 (Subgradient Iteration Algorithm)

INITIALIZATION: i = 0, x(0), P0 = PT
0 > 0, ε > 0 SMALL, 0 < η < 2,

INTEGER L > 0.

Step 1. SET i← i + 1.

Step 2. GENERATE A RANDOM SAMPLE ∆(i) WITH PROBABILITY DISTRIBU-
TION f∆.

Step 3. IF vγ(x(i),∆(i)) 6= 0 THEN TAKE

x(i+1) = ΠX [x(i) − µi∇vγ(x(i),∆(i))]. (2.20)

WITH

µi = η
vγ(x(i),∆(i)) + r‖∇vγ(x(i),∆(i))‖2

‖∇vγ(x(i),∆(i))‖22
(2.21)

ELSE TAKE x(i+1) = x(i).

Step 4. IF
{
vγ(x(i+j−L),∆(i+j−L)) = 0 FOR j = 0, 1, . . . , L

}
THEN Stop

ELSE Goto Step 1.

did not change “significantly” in the last L iterations. Once the algorithm has
terminated, a Monte-Carlo simulation could be performed to estimate the em-
pirical probability of robust feasibility (Calafiore and Polyak 2001). Whenever
the obtained probability is unsatisfactory, the number L can be increased and
the algorithm can be continued until a better solution (achieving higher empir-
ical probability of robust feasibility) is found.

For proving the convergence of the algorithm, the following technical as-
sumption needs to be additionally imposed.

Assumption 2.3 For any x(i) 6∈ Sγ there is a non-zero probability to generate a
sample ∆(i) for which vγ(x(i),∆(i)) > 0, i.e.

Prob(vγ(x(i),∆(i)) > 0) > 0.

This assumption is not restrictive and needs to hold also for the algorithm, pro-
posed in the next section. Note that a sufficient for the assumption to hold is
that the density function f∆ is nonzero everywhere. The assumption is needed
to make sure that the algorithm will not terminate at an infeasible point x(i) 6∈ Sγ

at which there is a zero probability for a correction step to be executed. By cor-
rection step it is meant an iteration (2.20) with x(i+1) 6= x(i).

It is shown in Calafiore and Polyak (2001) that for any initial condition x0 ∈
X , the SIA finds a feasible solution with probability one in a finite number of
iterations, provided that Assumptions 2.2 and 2.3 hold. It is also shown that the
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number
ISIA = ‖x(0) − x∗‖2/(r2η(2− η)) (2.22)

provides an upper bound on the maximum number of correction steps that will
be executed before a feasible solution is reached. However, the relation 2.22 can-
not be directly used to compute the bound ISIA since x∗ is unknown.

Although there are a lot of applications for which the subgradient algorithm
performs well, in general it possesses the weakness that Assumption 2.2 is too
restrictive, i.e. the number r is not known. As it is demonstrated below, if it
is selected not small enough, so that the condition in Assumption 2.2 does not
hold, then Algorithm SIA results in an oscillatory sequence {x(i)}i=1,2,... that ac-
tually diverges from the solution set. On the other hand, if r is selected too small
to make sure that Assumption 2.2 is satisfied, then the convergence rate of the
algorithm can drastically slow down since the maximum number of correction
steps is reversely proportional to r2. To experimentally illustrate this discussion
we consider an example. Before we proceed with this example, however, we de-
fine the level set LSγ(c,∆∗) for the function vγ(x,∆) for some given ∆∗ ∈∆ and
a given scalar c > 0 as follows

LSγ(c,∆∗)
.
= {x ∈ X : vγ(x,∆∗) ≤ c}. (2.23)

Example 2.1 Consider the discrete-time system

M : xk+1 = xk + uk, (2.24)

and the following standard LQ cost function

JLQR =
∞∑

i=1

‖xk+i‖
2
Q + ‖uk+i‖

2
R,

for some Q,R > 0. It is shown in Kothare et al. (1996) that the control action

uk = Fxk = Y X−1xk

achieves an upper bound of xT
k X−1xk on the cost function if and only if X = XT >

0 and Y are such that






X (AX + BY )T XQ1/2 Y T R1/2

⋆ X 0 0
⋆ ⋆ I 0
⋆ ⋆ ⋆ I






≥ 0. (2.25)

By (randomly) selecting Q = 1, R = 10, r = 1, η = 1, X0 = 0.1545, Y0 =
−1.7073, the subgradient iteration algorithm does not converge to the solution set,
but rather begins to oscillate, as it can be seen from Figure 2.1. The feasibility set
is represented by the innermost contour in Figure 2.1 (left). The contours in Fig-
ure 2.1 represent different level sets. The reason for these oscillations is that there
exists no ball of radius r = 1 inside the solution set, as required by 2.2. Clearly,
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Figure 2.1: Performance of the Subgradient Iteration Algorithm for system
M: (left) level curves of vγ([X Y ]T ) together with a plot of the sequence
{[X(i), Y (i)]T }16i=1, (right) plot of vγ([X(i), Y (i)]T ) versus the iteration number
i.

for this trivial example one can obtain convergence by simply reducing r a bit (for
instance, taking r = 0.5 results in convergence to a solution in six iterations), but
in general for larger systems of LMIs simple trial-and-error method with different
values of the radius r may not be the best option.

As proposed in Calafiore and Polyak (2001); Kushner and Yin (1997), one way
to circumvent the lack of knowledge of r is to substitute it with a sequence {ǫs}
such that ǫs > 0, ǫ → 0 and

∑∞
s=0 ǫs = ∞. This releases the assumption that the

radius r is known while at the same time retaining the property of guaranteed
convergence in a finite number of iterations with probability one. However, this
approach increases the number of iterations necessary to arrive at a feasible so-
lution. In addition to that the choice of an appropriate sequence {ǫs} remains
an open question.

The approach that we propose in this chapter is based on the Ellipsoid Al-
gorithm (EA). The starting point in EA is the computation of an initial ellipsoid
that contains the solution set Sγ . Then, similarly to the SIA method, at each iter-
ation of the EA two steps are performed. In the first step a random uncertainty
sample ∆(i) ∈ ∆ is generated according to the given probability density func-
tion f∆(∆). With this generated uncertainty the convex function Uγ(x,∆(i)) is
parametrized and used at the second step of the algorithm where an ellipsoid
is computed, in which the solution set is guaranteed to lie. In this way the EA
produces a sequence of ellipsoids with decreasing volumes, all containing the
solution set. Using some existing facts, and provided that the solution set has a
non-empty interior, it will be established that this algorithm converges to a feasi-
ble solution in a finite number of iterations with probability one. To initialize the
algorithm, a method is presented for obtaining an initial ellipsoid that contains
the solution set. It is also shown that even if the solution set has a zero volume,
the EA converges to the solution set when the iteration number tends to infinity,
which is a property not possessed by the SIA.
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Figure 2.2: One iteration of the ellipsoid method in the two-dimensional case.

2.3 The Ellipsoid Algorithm: Feasibility

The algorithm presented below releases the restrictive Assumption 2.2, and re-
tains only Assumption 2.3. Convergence in a finite number of iterations with
probability one is also guaranteed.

Assume that an initial ellipsoid E(0), that contains the solution set Sγ , is given

E(0) = {x ∈ X : (x− x(0))T P−1
0 (x− x(0)) ≤ 1} ⊇ Sγ (2.26)

described by its center x(0) ∈ X and the matrix P0 ∈ C
+
N related to its shape and

orientation. We further assume that the dimension N of the vector of unknowns
is is larger than one2. The problem of finding such an initial ellipsoid will be
discussed in the next section. Define

H(0) .
= {x ∈ X : ∇T vγ(x(0),∆)(x− x(0)) ≤ 0}.

Due to the convexity of the function vγ(x,∆) we know that H(0) also contains the
solution set Sγ , and therefore Sγ ⊆ H(0) ∩ E(0). We can then construct a new el-
lipsoid, E(1), as the minimum volume ellipsoid such that E(1) ⊇ H(0)∩E(0) ⊇ Sγ ,
and such that the volume of E(1) is less than the volume of E(0). This, repeated
iteratively, represents the main idea behind the Ellipsoid Algorithm (Boyd et al.
1994; Grötschel et al. 1988).

Suppose that after iteration i we have x(i) ∈ X and Pi = PT
i > 0 such that

E(i) = {x ∈ X : (x− x(i))T P−1
i (x− x(i)) ≤ 1} ⊇ Sγ .

The Ellipsoid algorithm, visualized in the two-dimensional case in Figure 2.2, is
then summarized in Algorithm 2.2.

The algorithm terminates when the value of the function vγ(x(·),∆(·)) re-
mains equal to zero for L successieve iterations or when the volume of the el-
lipsoid (which is proportional to det(P )1/2) becomes smaller than a pre-defined

2With N = 1 the algorithm simplifies to a bisection algorithm.
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Algorithm 2.2 (The Ellipsoid Algorithm for (PF ))

INITIALIZATION: i = 0, x(0), P0 = PT
0 > 0, ε > 0 SMALL, INTEGER L > 0.

Step 1. SET i← i + 1.

Step 2. GENERATE A RANDOM SAMPLE ∆(i) WITH PROBABILITY DISTRIBU-
TION f∆.

Step 3. IF vγ(x(i),∆(i)) 6= 0 THEN TAKE

x(i+1) = x(i) −
1

N + 1

Pi∇vγ(x(i),∆(i))
√

∇T vγ(x(i),∆(i))Pi∇vγ(x(i),∆(i))

Pi+1 =
N2

N2 − 1

(

Pi −
2

N + 1

Pi∇vγ(x(i),∆(i))∇T vγ(x(i),∆(i))PT
i

∇T vγ(x(i),∆(i))Pi∇vγ(x(i),∆(i))

)

ELSE TAKE x(i+1) = x(i), Pi+1 = Pi.

Step 4. FORM THE ELLIPSOID

E(i+1) = {x : (x− x(i+1))T P−1
i+1(x− x(i+1)) ≤ 1} ⊇ Sγ .

Step 5. IF

(√

det(P ) < ε
)

OR
(
vγ(x(i+j−L),∆(i+j−L)) = 0 FOR j =

0, 1, . . . , L
)

THEN Stop ELSE Goto Step 1.

small positive number ε. In the latter case no feasible solution is found (for in-
stance due to the fact that the solution set has an empty interior, i.e. vol(Sγ) = 0).
In such case γ has to be increased in the feasibility problem (2.8) on page 38 and
Algorithm 2.2 has to be started again until a feasible solution is found. Note that
if the feasibility problem (2.8) is feasible for some γ∗, then it is also feasible for
any γ > γ∗. It should also be noted that, due to the probabilistic nature of the
algorithm, the fact that the algorithm terminates due to the cost function being
equal to zero for a finite number L of successive iterations does not necessarily
imply that a feasible solution is found. In practice, however, choosing L suffi-
ciently large ensures the feasibility of the solution.

The convergence of the approach is established immediately, provided that
Assumption 2.3 holds, which implies that for any x(i) 6∈ Sγ there exists a non-
zero probability for the execution of a correction step (i.e. there is a non-zero
probability for generation of ∆(i) ∈∆ such that vγ(x(i),∆(i)) > 0).

Lemma 2.4 (Convergence of Algorithm EA) Consider Algorithm 2.2 without the
stopping condition in Step 5 (or with ε = 0 and L → ∞), and suppose that As-
sumption 2.3 holds. Suppose also that

(i) vol(Sγ) > 0. Then a feasible solution will be found in a finite number of itera-
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tions with probability one.

(ii) vol(Sγ) = 0. Then

lim
i→∞

x(i) = x∗ ∈ Sγ

with probability one.

Proof: Suppose that at the i-th iteration of Algorithm EA k(i) correction steps
have been performed. Algorithm EA generates ellipsoids with geometrically de-
creasing volumes so that for the i-th iteration we can write (Boyd et al. 1994)

vol(E(i)) ≤ e−
k(i)
2N vol(E(0)),

Due to Assumption 2.3, for any x(i) 6∈ Sγ there exists a non-zero probability
for the execution of a correction step. Therefore, at any infeasible point xk(i) the
algorithm will execute a correction step after a finite number of iterations with
probability one. This implies that

lim
i→∞

vol(E(i)) = 0. (2.27)

(i) If we then suppose that the solution set Sγ has a non-empty interior, i.e.
vol(S) > 0, then from equation (2.27) and due to the fact that E(i) ⊇ Sγ for
all i = 0, 1, . . . , it follows that in a finite number of iterations with probability
one the algorithm will terminate at a feasible solution.
(ii) If we now suppose that vol(S) = 0, then due to the convexity of the function,
and due to equation (2.27), the algorithm will converge to a point in Sγ with
probability one. �

The result in Lemma 2.4 outlines the advantages of Algorithm EA over the
previously proposed Algorithm SIA. While in the case vol(Sγ) > 0 Algorithm EA
preserves the property of guaranteed convergence with probability one in a fi-
nite number of iterations, it offers the advantages over Algorithm SIA that

• no a-priori knowledge about a number r > 0 satisfying the condition in
Assumption 2.2 is necessary (we will discuss how to find an initial ellipsoid
in the next Section), and

• it converges (although at infinity) even in the case that the set Sγ has an
empty interior.

Remark 2.3 It needs to be noted, however, the Lemma 2.4 considers Algorithm EA
with L→∞, which in practice is never the case. For finite L the solution found by
the algorithm can only be guaranteed to be ǫ-suboptimal with some probability.
To be more specific, let some scalars ǫ ∈ (0, 1) and δ ∈ (0, 1) be given, and let x∗ be
the output of Algorithm EA for ε = 0 and L ≥ ln 1

δ /ln 1
1−ǫ . Then (Dabbene 1999;

Fujisaki and Kozawa 2003)

Prob{Prob{vγ(x∗,∆) > 0} ≤ ǫ} ≥ 1− δ.

Therefore, if we want with high confidence (e.g. δ = 0.01) that the probability that
x∗ is an optimal solution is very high (1−ǫ = 0.999) then we need to select L larger
than 4603. In practice, however, a much smaller value for L suffices.
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Finally, similarly to the bound ISIA on the maximum number of correction
steps for the Subgradient Iteration Algorithm (see equation (2.22) on page 43),
we can derive such an upper bound for the proposed Ellipsoid method.

Lemma 2.5 Consider Algorithm EA, and suppose that Assumption 2.3 holds. Sup-
pose further that the solution set has a non-empty interior, i.e. vol(Sγ) > 0. Then
the number

IEA = 2N

⌈

ln
vol(E(0))

vol(Sγ)

⌉

(2.28)

is an upper bound on the maximum number of correction steps that can be per-
formed starting from any ellipsoid E(0) ⊇ Sγ , where ⌈a⌉, a ∈ R, denotes the mini-
mum integer number larger than or equal to a.

Proof: It is shown in Boyd et al. (1994) that for the k(i)-th correction step one
can write

vol(E(k(i))) ≤ e−
k(i)
2N vol(E(0)).

Since the volume of the consecutive ellipsoids tends to zero, and since vol(Sγ) >
0, there exists an correction step number IEA such that

e−
k(i)
2N vol(E(0)) ≤ vol(Sγ), for {∀i : k(i) ≥ IEA}.

Therefore, we could obtain the number IEA from the following relation

vol(Sγ)

vol(E(0))
≥ e−

k(i)
2N ⇐= {∀i : k(i) ≥ IEA}.

Now, by taking the natural logarithm on both sides one obtains

ln
vol(Sγ)

vol(E(0))
≥ −

k(i)

2N
⇐= {∀i : k(i) ≥ IEA}

or

k(i) ≥ 2N ln
vol(E(0))

vol(Sγ)
⇐= {∀i : k(i) ≥ IEA}

Therefore, equation (2.28) is proven. �

We would like to point out that usually IEA ≪ ISIA. This is demonstrated in
the following example.

Example 2.2 (Comparison between the bounds IEA and ISIA) Suppose that the
dimension of our vector of unknowns x is 10 (i.e. N = 10), and that the solution
set is a ball of radius 1.1 and center x∗ ∈ R

10

Sγ = {x ∈ R
10 : ‖x− x∗‖ ≤ 1.1}.

To make a fair comparison between the SIA and the newly proposed EA we proceed
as follows: we assume that the initial condition x(0) for SIA is at a distance d >
1.1 from the center of Sγ , i.e. ‖x(0) − x∗‖ = d, and that the initial ellipsoid for
EA is a ball of radius d. Since for SIA the number r in Assumption 2.2 should be
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Figure 2.3: Comparison between the upper bounds IEA and ISIA for the algo-
rithms SIA and EA.

known, we will make several experiments with r = {0.001, 0.01, 0.1, 1}. For these
values of r, and for d = {10, 102, 103, 104, 105} the two upper bounds IEA and
ISIA on the maximum numbers of possible correction steps for the two algorithms
were computed. Figure 2.3 represents the results (note that all the three axes are in
logarithmic scale). Clearly, IEA ≪ ISIA. It should be pointed out that even if one
selects the initial ellipsoid for the EA to be a ball of radius 10d, or even 100d, one
still gets IEA ≪ ISIA.

Example 2.3 Let us consider again Example 2.1 on page 43. Suppose that we se-
lect the initial ellipsoid (2.26) on page 45 for the EA as follows

E(0) =

{

x ∈ X :

(

x−

[
0

0.5

])T [
4

0

0

4.25

]−1(

x−

[
0

0.5

])

≤ 1

}

.

Then the EA terminates in 16 iterations at a feasible solution. Figure 2.4 visualizes
the convergence process by depicting four ellipsoids: the initial one, and the ellip-
soids obtained at iterations 7, 13, and 16. The figure also shows the performance
of the SIA (when executed on this example with constant parameter r = 1) for
comparison.

It should be pointed out here that the initial ellipsoid used in this example has
been chosen so that it “embraces” the trajectory made by the SIA algorithm. If the
method for finding the initial ellipsoid from the next section was used instead then
the EA would terminate in one iteration, i.e. the center of the initial ellipsoid lies
in the feasibility set.

In the next Section we present a method to obtain an initial ellipsoid.

2.4 Finding an Initial Ellipsoid E
(0)

In this section we consider the problem of finding initial ellipsoid that contains
the solution set Sγ , that is needed to initialize Algorithm EA. The approach that
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Figure 2.4: Performance of the EA on the problem in Example 2.4.

will first be presented in the next subsection is applicable to general LMI prob-
lems of the form (2.9) on page 38. Afterwards we will concentrate on a more
specific problem, namely the problem of constrained robust linear least squares
(LLS). This problem is a special case of (2.9) on page 38 and is also in the basis
of the well-known Model Predictive Control (MPC) strategy, discussed later on
in Chapter 5 of this thesis. The reason for considering this problem separately is
that due to its structure the initial ellipsoid can be formed in an easier and more
natural way.

2.4.1 Procedure for General LMI Problems

Before the method for obtaining an initial ellipsoid is presented, some additional
notation must be introduced. In addition to the solution set Sγ and the level sets
LSγ(c,∆), we now define the local solution sets for any fixed ∆i ∈ ∆ as the level
set at zero

S0(∆i)
.
= LSγ(0,∆i). (2.29)

Therefore, any x∗ ∈ Sγ is such that x∗ ∈ S0(∆) for all ∆ ∈ ∆. Also the solution
set Sγ is the intersection of all local solution sets

Sγ =
⋂

∆i∈∆

S0(∆i).

Note also, that for any c ≥ 0 it holds that LSγ(c,∆) ⊇ S0(∆) ⊇ Sγ . Figure 2.5
provides a two-dimensional visualization. Due to the convexity of the functions
vγ(x,∆i) (consult Lemma 2.3 on page 40), the solution set is clearly convex.

The following additional assumption needs to be imposed.

Assumption 2.4 It is assumed that the level setX
⋂

LSγ(0,∆) is a bounded set for
all ∆ ∈∆.
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Figure 2.5: Level sets LSγ(vi,∆i), local solution sets S0(∆i) = LSγ(0,∆i), and
the (global) solution set Sγ .

Assumption 2.4 can be ensured by means of selecting the set X to be bounded
as would, for instance, be the case when one selects X to be a bounded box (see
Figure 2.5). From practical point of view this assumption is not very restrictive
since the box can be selected “large enough” to encompass (at least a part of) the
solution set. Notice also, that from numerical point of view the introduction of
such hard constraints on the entries of the vector x is not unreasonable since, as
discussed in the beginning of this chapter, the optimal solution is often needed
to parametrize a controller or an observer, and as a result very large entries in
x may lead to numerical problems. It should also be pointed out that such an
assumption is not imposed in Algorithm SIA; in fact, as shown by Liberzon and
Tempo (2003), cases in which the solution set is not bounded are even favorable
for SIA. For instance, considering the problem of finding a Lyapunov matrix P for
a stable linear system ẋ = Ax by means of solving the inequality PA + AT P < 0
makes it clear, that if P ∗ is a solution then αP ∗ is also a solution for any α >, so
that for this problem Assumption 2.2 is satisfied for any r > 0.

Let us now again concentrate on the problem of finding the initial ellipsoid
containing the solution set Sγ under Assumption 2.4. For this purpose we will
make use of the fact that Sγ is contained in any local solution set S∆, and there-
fore in any level set LSγ(c,∆) for any c > 0 and ∆ ∈ ∆. It is, therefore, con-
tained in LSγ(0,∆(0)), for some (possibly randomly generated) ∆(0) ∈ ∆, i.e.
Sγ ⊆ LSγ(0,∆(0)). The idea is then to find an ellipsoid that contains the level set
LSγ(0,∆(0)). To this end we will first bound the set LSγ(0,∆(0)) with a rectangu-
lar parallelepiped, and then we build an ellipsoid around it as shown in Figure
2.6, which we will use as an initial ellipsoid to start Algorithm EA. In order to find
a bounding rectangular parallelepiped, we need to find solutions to the follow-
ing constrained optimization problems

x̄i = max
x∈X

xi, subject to x ∈ LSγ(0,∆(0)), i = 1, 2, . . . , N,

xi = min
x∈X

xi, subject to x ∈ LSγ(0,∆(0)), i = 1, 2, . . . , N,

These can be rewritten as LMI problems by noting that

{x ∈ LSγ(0,∆(0))} ≡ {x ∈ X : vγ(x,∆(0)) = 0} ≡ {x ∈ X : Uγ(x,∆(0)) ≤ 0}.
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Figure 2.6: The initial ellipsoid is computed by first bounding the level set
LSγ(0, 0) with a box, and then obtaining an ellipsoid that embraces it (not drawn
on the figure).

Note that under Assumption 2.4 it holds that−∞ < xi ≤ x̄i <∞. Hence, the box

R = {x : x ≤ x ≤ x̄} ⊇ LSγ(0, 0) ⊇ Sγ . (2.30)

x̄ = [x̄1, . . . , x̄N ]T and x = [x1, . . . , xN ]T , contains the solution set. Then the
following result holds.

Lemma 2.6 The ellipsoid E
(0)
P = {x : (x− x(0))T P−1

0 (x− x(0))}with

x(0) =
1

2
(x + x), P0 =

dim x

4
[diag(x− x)]

2
(2.31)

contains the solution set S, where x and x are defined as the vertexes of the box R
in equation (2.30).

Proof: It can easily be verified that the ellipsoid

Ein
.
= {x : (x− x(0))T Z−1(x− x(0)) ≤ 1}

with x(0) = 1
2 (x+x) and Z =

[
1
2diag(x− x)

]2
is inside R and its axes are perpen-

dicular to the faces of R. This ellipsoid can be equivalently represented as

Ein = {x : ‖Z−1/2x− Z−1/2x(0)‖22 ≤ 1}.

Stretching the ellipsoid Ein by α > 1 results in

Eout = {x : α−1‖Z−1/2x− Z−1/2x(0)‖22 ≤ 1},
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Algorithm 2.3 (Initial Ellipsoid Computation)

INITIALIZATION: SELECT ANY ∆(0) ∈∆.

Step 1. FIND SOLUTIONS TO THE LMI PROBLEMS

x̄i = max
x∈X

xi, SUBJECT TO Uγ(x,∆(0)) ≤ 0, i = 1, 2, . . . , N,

xi = min
x∈X

xi, SUBJECT TO Uγ(x,∆(0)) ≤ 0, i = 1, 2, . . . , N.

Step 2. TAKE x̄ = [x̄1, . . . , x̄N ]T AND x = [x1, . . . , xN ]T .

Step 3. TAKE E(0) WITH x(0) AND P0 DEFINED IN (2.31) AS INITIAL ELLIP-
SOID.

which we want to make such that it contains the vertex points x and x of the box
R. Therefore we select α such that the vertex points of the box R = {x : x ≤ x ≤
x} lie on the surface of Eout, i.e.

α = ‖Z−1/2x− Z−1/2x(0)‖22
= ‖Z−1/2 1

2 (x− x)‖22

=
∥
∥
∥[diag(x− x)]

−1
(x− x)

∥
∥
∥

2

2
= dimd.

Therefore the ellipsoid

Eout = {x : (x− x(0))T (αZ)−1(x− x(0)) ≤ 1},

embraces the box R and the initial ellipsoid (2.26) parameterized by (2.31) con-
tains the box R, that on its turn contains the solution set S. �

Algorithm 2.3 summarizes the procedure for initial ellipsoid computation.

The initial ellipsoid computation procedure is next illustrated with a simple
example.

Example 2.4 (Initial Ellipsoid Computation) To illustrate the algorithm for ini-
tial ellipsoid computation, proposed in the previous Section, we consider the fol-
lowing system

ẋ(t) = −x(t) + u(t) + ξ(t)
z(t) = x(t)

for which a constant state-feedback controller has to be designed such that the
squaredH∞-norm of the resulting closed-loop system is less than γ = 10−5. Using
the results in (Boyd et al. 1994), this would be the case if there exist Q ∈ R, R ∈ R,
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Figure 2.7: Illustration of the algorithm for initial ellipsoid computation.

and L ∈ R such that







Q 0 0 0
⋆ 2Q− L− LT 1 Q
⋆ ⋆ 1 0
⋆ ⋆ ⋆ γ







> 0

Figure 2.7 visualizes the initial ellipsoid that was generated by Algorithm 2.3 on
page 53.

2.4.2 The Constrained Robust Least-Squares Problem

The linear least squares problem arises in a wide variety of engineering appli-
cation, ranging from data fitting to controller and filter design. It is in the basis
of the well-known Model Predictive Control (MPC) strategy, an industrially very
relevant control technique due to its ability to handle constraints on the inputs
and outputs of the controlled system.

In this subsection the following robust constrained linear least-squares prob-
lem is considered: Find x ∈ R

N that achieves







Optimization problem (P):
Find x ∈ R

N that achieves

γopt = min
x

max
∆∈∆

‖b(∆)−A(∆)x‖22, subject to

F (x,∆)
.
= F0(∆) +

N∑

i=1

Fi(∆)xi ≥ 0, ∀∆ ∈∆

(2.32)

where x = [x1, . . . , xN ]T denotes the vector of unknowns, b(∆) ∈ R
p and A(∆) ∈

R
p×N are known functions of the uncertainty ∆ ∈∆. Similarly to (2.8) on page 38
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we first concentrate on the feasibility problem, that now has the form






Feasibility problem (FP):
Given γ > 0, find x ∈ R

N that achieves

max
∆∈∆

‖b(∆)−A(∆)x‖22 ≤ γ,

F (x,∆) ≥ 0, ∀∆ ∈∆.

Clearly,
(P)⇐⇒ min γ s.t. (FP)-feasible.

We proceed by recasting the feasibility problem (FP) to an LMI feasibility
problem. To this end, note that the first inequality in (FP) is equivalent to

(b(∆)−A(∆)x)
T

I−1 (b(∆)−A(∆)x) ≤ γ,

so that by using the Schur complement it becomes an LMI

Gγ(x,∆)
.
=

[
I b(∆)−A(∆)x
⋆ γ

]

≥ 0,

where ⋆ denotes entries in LMIs that follow by symmetry. As a result, the feasi-
bility problem (FP) becomes

(FP)⇐⇒

[
Gγ(x,∆)

F (x,∆)

]

> 0, ∀∆ ∈∆.

For solving this (robust) LMI problem with the probabilistic approach, we
begin by defining the following function

wγ(x,∆)
.
= ‖Π−[Gγ(x,∆)]‖2F + ‖Π−[F (x,∆)]‖2F . (2.33)

Note that wγ(x,∆) has the same form as vγ(x,∆) defined in equation (2.11) on
page 39 besides that now the projection Π− is used instead of Π+. Similarly, for
this function the following result holds.

Lemma 2.7 The function wγ(x,∆) is convex and differentiable, and its gradient
is given by

∇wγ(x,∆) =

(
[

0N −4
]
Π−[Gγ(x,∆)]

[
A(∆)

0

])T

+

2






trace(F1(∆)Π−[F (x,∆)])
...

trace(FN (∆)Π−[F (x,∆)])




 .

(2.34)

Proof: Since both Gγ(x,∆) and F (x,∆) are affine in x, then following the same
reasoning as in the proof of Lemma 2.3 on page 40 it can be shown that the func-
tion wγ(x,∆) is also convex and differentiable, and that

∇wγ(x,∆)

= 2






trace(Gγ,1(∆)Π−[Gγ(x,∆)])
...

trace(Gγ,N (∆)Π−[Gγ(x,∆)])






︸ ︷︷ ︸

∇‖Π−[Gγ(x,∆)]‖2
F

+2






trace(F1(∆)Π−[F (x,∆)])
...

trace(FN (∆)Π−[F (x,∆)])






︸ ︷︷ ︸

∇‖Π−[F (x,∆)]‖2
F
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where Gγ,i(∆) = Gγ(ei,∆) −Gγ(0,∆) with ei ∈ R
N defined in equation 2.13 on

page 40. Making use of the special structure of the matrix Gγ(x,∆), and letting
Ai(∆) = A(∆)ei denote the i-th column of the matrix A(∆), we can then write
that

trace(Gγ,i(∆)Π−[Gγ(x,∆)])

= −trace

(

Π−[Gγ(x,∆)]

[
0 Ai(∆)

AT
i (∆) 0

])

= −2trace

(
[

0T
N , 1

]
Π−[Gγ(x,∆)]

[
Ai(∆)

0

])

from where it follows that

∇‖Π−[Gγ(x,∆)]‖2F =

(
[

0N −4
]
Π−[Gγ(x,∆)]

[
A(∆)

0

])T

,

which completes the proof. �

An initial ellipsoid can be found by making use the fact that any ellipsoid that
contains the set {

x : max
∆∈∆

‖b(∆)−A(∆)x‖22 ≤ γ

}

(2.35)

also contains the solution set

Sγ =

{

x : max
∆∈∆

‖b(∆)−A(∆)x‖22 ≤ γ, F (x,∆) ≥ 0, ∀∆ ∈∆

}

.

On the other hand we note that for any ∆̂ ∈∆ the set

J (∆̂)
.
=
{

x : ‖b(∆̂)−A(∆̂)x‖22 ≤ γ
}

(2.36)

contains the set defined in equation (2.35). Therefore, it will suffice to find an
initial ellipsoid such that

E(0) ⊇ J (∆̂)

for some ∆̂ ∈ ∆ in order to be sure that E(0) will also contain Sγ . Usual choice

for ∆̂ is ∆̂ = 0 (provided that 0 ∈ ∆, of course), but in practice any other (i.e.
randomly generated) element ∆̂ from the set ∆ can be used.

For simplicity of notation we also define the ellipsoid

E(x̄, P̄ )
.
= {x : (x− x̄)T P̄−1(x− x̄) ≤ 1},

with center x̄ and with the matrix P̄ = P̄T > 0 defining its shape and orientation.
The following cases, related to the rank and dimension of the matrix A can be
differentiated:

Case 1. p = N and A(∆̂) is invertible.

In this case

J (∆̂) =

{

x :
(

x−A−1(∆̂)b(∆̂)
)T AT (∆̂)A(∆̂)

γ

(

x−A−1(∆̂)b(∆̂)
)

≤ 1

}

so that E(0) = E
(

A−1(∆̂)b(∆̂), AT (∆̂)A(∆̂)
γ

)

.



2.4 Finding an Initial Ellipsoid E(0) 57

Case 2. p > N and A(∆̂) is left-invertible.

We can thus factorize A(∆̂) (e.g. by using the singular value decomposition) as

A(∆̂) = Uγ

[

A1(∆̂)
0

]

,

where Uγ is a unitary matrix and A1(∆̂) is a square non-singular matrix. Denot-
ing

[
b1(∆̂)

b2(∆̂)

]

= UT
γ b(∆̂),

we can then write

‖(b(∆̂)−A(∆̂)x)‖22 =

∥
∥
∥
∥
Uγ

[
b1(∆̂)−A1(∆̂)x

b2(∆̂)

]∥
∥
∥
∥

2

2

= ‖b1(∆̂)−A1(∆̂)x‖22 + ‖b2(∆̂)‖22 ≤ γ.

Therefore, we take

J (∆̂) =
{

x : ‖b(∆̂)−A(∆̂)x‖22 ≤ γ
}

=
{

x : ‖b1(∆̂)−A1(∆̂)x‖22 ≤ γ − ‖b2(∆̂)‖22

}

=

{

x :
(

x−A−1
1 (∆̂)b1(∆̂)

)T
AT

1 (∆̂)A1(∆̂)

γ−‖b2(∆̂)‖2
2

(

x−A−1
1 (∆̂)b1(∆̂)

)

≤ 1

}

,

so that E(0) = E
(

A−1
1 (∆̂)b1(∆̂),

AT
1 (∆̂)A1(∆̂)

γ−‖b2(∆̂)‖2
2

)

.

Case 3. A(∆̂) is not full column rank.

In this case we cannot obtain an analytic expression for the initial ellipsoid, which
could be computed by directly solving all N optimization problems in Algorithm
2.3 on page 53. However, the computational burden can be reduced here by
solving N −K instead of N optimization problems in Algorithm 2.3 on page 53,
where K is the rank of the matrix A(∆̂). To this end we proceed as follows. First,
use the singular value decomposition to find a unitary matrix V such that

A(∆̂)V =
[

Ā, 0
]
,

where Ā ∈ R
p×K is full column rank matrix (with K < N ). Define

x̄ = V T x =

[
x(1)

x(2)

]

,

with x(1) ∈ R
K and x(2) ∈ R

N−K . Then

J (∆̂) =
{

x : ‖b(∆̂)−A(∆̂)x‖22 ≤ γ
}

=

{

V

[
x(1)

x(2)

]

: ‖b(∆̂)− Âx(1)‖22 ≤ γ

}
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Then we use either Case 1 or Case 2 (depending on whether Ā is square or not)
to form an ellipsoid E1 = E

(
x̄1, P̄1

)
based on Ā. In this way we have defined

an ellipsoid in which x(1) should lie. The goal is to find another ellipsoid E2 =
E
(
x̄2, P̄2

)
for x(2) and to subsequently merge these two ellipsoids.

The second ellipsoid, E2 = E
(
x̄2, P̄2

)
, can be found using Algorithm 2.3 on

page 53 of the previous subsection under assumption 2.4.

Given the two ellipsoids E1 = E
(
x̄1, P̄1

)
and E2 = E

(
x̄2, P̄2

)
we can merge

them into one by observing that for all

[
x(1)

x(2)

]

∈ E

([
x̄1

x̄2

]

,

[
2P̄1

2P̄2

])

it holds that

x(1) ∈ E
(
x̄1, P̄1

)
,

x(2) ∈ E
(
x̄2, P̄2

)
.

By going back to the original variables, the initial ellipsoid for this Case 3 is taken
as

E(0) = E

(

V

[
x̄1

x̄2

]

, V

[
2P̄1

2P̄2

]

V T

)

.

In this way the initial ellipsoid for the feasibility problem corresponding to
the special case of constrained robust least squares can be computed in order to
be subsequently used in the probabilistic Algorithm EA.

2.5 The Ellipsoid Algorithm: Optimization

In Section 2.3 we focused our attention of the feasibility problem for a fixed value
of γ in (2.8) on page 38, and briefly discussed that once it has been solved a
bisection algorithm on γ can be used to solve the initial optimization problem
(2.7) on page 38. This is now summarized in Algorithm 2.4.

The algorithm begins by checking whether a feasible solution to (2.9) for
γ = 1 can be found by means of Algorithm EA. If not, γ is increased ten times
to γ = 10 and Algorithm EA is run again. In this way Algorithm 2.4 iterates be-
tween Step 1 and Step 7 until a feasible solution for some γ is found. After that
Algorithm 2.4 begins to iterate between Step 3 and Step 8, so that at each cycle
either γUB or γLB is set equal to the current γ, depending on whether this γ is
feasible or not. In this way [γLB , γUB ] is a constantly decreasing interval inside
which the optimal γ lies. The algorithm is terminated once the length of this
interval becomes smaller than the selected tolerance.

It should be born in mind that the smaller the selected tolerance Tol in Al-
gorithm 2.4 the larger the value of the parameter L needs to be selected. If fact,
one could derive a lower bound for L so that the obtained solution is an opti-
mal solution with a given probability for some desired confidence (see Remark
2.3). Again, such bounds are usually conservative and a much smaller number L
suffices in practice.
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Algorithm 2.4 (Ellipsoid Algorithm for (PO))

INITIALIZATION: REAL NUMBERS Tol > 0 AND γmax > 0 (SUFFICIENTLY

LARGE). SET γ1 = 1, γLB = 0, γUB ←∞, AND k = 1.

Step 1. FIND INITIAL ELLIPSOID E(0)
k (x

(0)
k , P

(0)
k ) FOR THE (2.9) WITH γ =

γk USING THE METHODS OF SECTION 2.4.

Step 2. SET Eopt(xopt, Popt) = E(0)
k (x

(0)
k , P

(0)
k ).

Step 3. RUN ALGORITHM 2.2 ON THE (2.9) WITH γ = γk AND WITH INI-
TIAL ELLIPSOID Eopt(xopt, Popt).

Step 4. DENOTE E∗k (x∗
k, P ∗

k ) AS THE ELLIPSOID AT THE FINAL ITERATION OF

ALGORITHM 2.2.

Step 5. IF (x∗
k 6∈ Sγk

) THEN (γLB = γ)
ELSE (γUB = γ AND Eopt(xopt, Popt) = E∗k (x∗

k, P ∗
k )).

Step 6. SET k ← k + 1.

Step 7. IF (γUB =∞) THEN (γk = 10γk−1 AND GOTO Step 1.)
ELSE (IF γLB = 0 THEN γk = 0.1γk−1 ELSE γk = γLB+γUB

2 )

Step 8. IF
(γUB−γLB)

γUB
> Tol AND γLB < γmax GOTO Step 3.

Step 9. EXIT THE ALGORITHM WITH γopt = γUB ACHIEVED BY xopt.

2.6 Experimental part

Next, we present an example illustrating the probabilistic approach developed
in this chapter used to design a robustH2 state-feedback controller for a model,
representing a real-life diesel actuator benchmark system, taken from (Blanke
et al. 1995). The model represents the behavior of a brushless DC motor, which
is the actuator part of a real-life speed governor for large diesel engines. A block-
schematic representation of the system is given on Figure 2.8.

A linear, continuous-time model of the system can be written in state-space form
as

ẋ(t) = A(δ)x(t) + Bu(δ)αu(t) + Bξ(δ)ξ(t)
z(t) = Czx(t)

(2.37)

with

A(δ) =





0 −Kv

Tv
0

δ1δ4

δ2
− δ3+Kvδ1δ4

δ2
0

0 1
N 0



 , Bu(δ) =





Kv

Tv
Kvδ1δ4

δ2

0



 , Bξ(δ) =





0
1

Nδ2

0



 ,
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Figure 2.8: Block scheme of the Diesel Engine Actuator.

Par Nom. value Unit Physical meaning

ftot 19.7× 10−3 Nm/rad/s Total friction

Itot 2.53× 10−3 kg.m2 Total inertia

Kq 0.54 Nm/A Torque constant of servo motor

Kv 0.9 A/rad/s Gain of the speed controller

N 89 - Gear ratio

αs 0.987 - Measurement scaling factor

η 0.85 − Gear efficiency

Tv 8.8× 10−3 s Integral time of the speed controller

α 1 − multiplicative actuator fault

Table 2.1: Nominal values of the parameters in the state-space model of the
diesel engine actuator benchmark example.

where xT = [i2, nm, so] is the state vector, u(t) = nref is the vector of control
actions applied to the system, yT = [n,

m, s,
o] is the vector of measured outputs,

z = i2 is the controlled output, and ξ = Ql is a disturbance signal. The nominal
values of the parameters, as well as their physical meaning, are given in Table
2.1. The variables in the state-space model (2.37) with their ranges and phys-
ical meaning are summarized in Table 2.2. The vector δ = [η, Itot, ftot, Kq]

T

represents the uncertain parameters in the system. Multiplicative uncertainty
representation is used so that

δ = (I + ∆)δnom, (2.38)

where

δnom .
= [0, 775, 2, 53.10−3, 3, 45.10−2, 0.54]T , (2.39)

and where

∆ ∈∆
.
= {diag(p1, p2, p3, p4) : |pi| ≤ p̄i} (2.40)

The scalar 0 ≤ α ≤ 1 in (2.37) is used to represent partial and total multiplica-
tive actuator faults in the system. α and the uncertainty set ∆ in which ∆ lies are
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Variable Range Unit Physical meaning

im |im| ≤ 30 A Motor current

nm |nm| ≤ 314 rad/s shaft speed of servo motor

nref |nref | ≤ 314 rad/s shaft speed reference

Ql |Ql| ≤ 6 Nm load torque

Qm |Qm| ≤ 16 Nm torque from servo motor

so |so| ≤ 0, 4 rad shaft angular position

Table 2.2: The variables in the state-space model of the diesel engine actuator
benchmark example.

defined below for the two simulations performed. The purpose of the first simu-
lation is to make a simple comparison with the existing SIA method. The second
simulation illustrates the design of a passive FTC controller.

The goal in both examples is design a state-feedback controller that guaran-
tees robust stability of the closed loop system and ensures that with minimal
energy of the input to the motor (im(t)) for impulse disturbance (load) ξ(t). To
this end we need to design anH2 robust state-feedback controller for the uncer-
tain system (2.37). As shown in Boyd et al. (1994), if the matrices Q = QT > 0,
R = RT , and L are such that for all possible values of the parameters δ the fol-
lowing system of LMIs is feasible

trace(R) < γ
[

R CzQ
⋆ Q

]

> 0
[
−A(δ)Q−QA(δ)T −Bu(δ)L− LT Bu(δ)T Bξ(δ)

⋆ I

]

> 0

(2.41)

then the state-feedback control law u(t) = Fx(t) with F = LQ−1 results in a
closed-loop system Tcl(s, δ) = Cz(sI −A(δ)−B(δ)Fx(t))−1Bξ(δ) withH2-norm
‖Tcl(s, δ)‖22 ≤ γ for all δ ∈∆.

2.6.1 Comparison with SIA

The goal of this comparison is to show that the newly proposed EA might be a
good alternative to the existing SIA for some applications. We here select the size
of the uncertainty set as originally proposed in Blanke et al. (1995), see Table 2.3.

Parameter: Value:

(p̄1, p̄2, p̄3, p̄4) ( 3
31 , 0.15, 5

7 , 0.05)
α 1

Table 2.3: Model parameters used for the comparison example in Section 2.6.1.
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In this example the feasibility problem is considered of finding state-feedback
gain matrix F that achieves an upper bound of γ = 1 on the performance index.
Application of the proposed approach, summarized in Algorithms 2.4 and 2.2,
resulted in the state-feedback gain matrix

F =
[
−318.4153 −44.6374 −1.3393

]
.

This solution was found by the EA method in about 100 iterations. This con-
troller was computed in MATLABr in a few seconds on a 400MHz computer. For
comparison, the SIA was terminated after 500 iterations having found no feasible
solution (it was run for r = 1, r = 0.1, and r = 0.01).

2.6.2 Passive FTC Design

In this section the uncertainty set is further increased and, in addition, partial
actuator faults represented by α in (2.37) are included in order to make a more
challenging example, that can later on in Chapter 4 be compared to an active
method for FTC. To this end the model parameters in this example are selected
as shown in Table 2.4. We note that in this example some or all of the uncertain
parameters can also be viewed as possible faults; they are treated by this passive
approach in the same way as uncertainties.

Par. Value

(p̄1, p̄2, p̄3, p̄4) ( 13
31 , 1

2 , 5
7 , 1

2 )
α [0.5, 1]

Table 2.4: Model parameters used for the passive FTC design in Section 2.6.2.

In this example the optimization problem is considered of minimizing γ sub-
ject to the system of LMIs (2.41). Running Algorithm 2.4 on the considered sys-
tem resulted in the following optimal state-feedback gain

F =
[
−13.6338 −14.3643 −3.8083× 10−7

]

that achieves γopt = 0.83125. The parameters used for Algorithms 2.4 and 2.2 are
Tol = 0.1, γmax = 100, ε = 0, and L = 40. The required precision was achieved
in 6 iterations of Algorithm 2.4 (each consisting of multiple sub-iterations in Al-
gorithm 2.2, called at Step 3 of Algorithm 2.4). A summary of the convergence
process is given in Table 2.5, where for each iteration the values for γk and its up-
per (γUB) and lower (γLB) bounds are provided, the volume of the final ellipsoid
E∗k , and the status (feasibility or infeasibility) of the computed solution.

2.7 Conclusions

In this chapter a new approach was proposed to the probabilistic design of ro-
bust controllers (state estimators), based on the Ellipsoid Algorithm. It features
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iter. γk γLB γUB vol(E∗k ) status

1 1 0 2 9.384× 104 feas

2 0.1 0 1 1.528× 101 infeas

3 0.55 0.1 1 4.891× 103 infeas

4 0.775 0.55 1 1.795× 104 infeas

5 0.8875 0.775 1 8.487× 104 feas

6 0.83125 0.775 0.8875 8.487× 104 feas

Table 2.5: Summary of the iterations performed by Algorithm 2.4. The optimal
feasible value for γ at each iteration is written in boldface.

a number of advantages over the probabilistic Subgradient Iteration Algorithm,
recently proposed in (Polyak and Tempo 2001; Calafiore and Polyak 2001). Al-
though the latter possessed a number of useful properties, namely guaranteed
convergence in a finite number of iterations with probability one, applicability
to general uncertainty structures and to large numbers of uncertain parameters,
it has the strong disadvantage that the radius of a non-empty ball contained in
the solution set must be known. This drawback is removed in the EA approach
proposed in this chapter, while still retaining the advantages of the SIA method.
Similarly to the SIA method, at each iteration of the EA two steps are performed.
In the first step a random uncertainty sample ∆(i) ∈ ∆ is generated according
to the given probability density function f∆(∆). With this generated uncertainty
a suitably defined convex function is parametrized so that at the second step of
the algorithm an ellipsoid is computed, in which the solution set is guaranteed to
lie. As a result, the EA algorithm produces a sequence of ellipsoids with decreas-
ing volumes, all containing the solution set. An efficient method for obtaining
an initial ellipsoid is also proposed in the chapter. The approach is illustrated by
means of a case study with a real-life diesel actuator benchmark model with four
real uncertain parameters, for which anH2 robust state-feedback controller was
designed.
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3
BMI Approach to Passive
Robust Output-Feedback FTC

As discussed in Chapter 1, the FTC methods are divided into passive and active
ones. In Chapter 2 a probabilistic approach was presented to passive FTC where
the starting point was a robust LMI. It was discussed that the problem of robust
state-feedback controller design is representable in terms of such robust LMIs.
The robust output-feedback controller design problem, on the other hand, is a
nonconvex problem that cannot be addressed by the methods of Chapter 2. For
most standard design objectives, includingH2 andH∞-norm minimization, this
problem is representable as bilinear matrix inequality (BMI) optimization prob-
lem. Being able to solve such BMI problems is therefore important for passive
output-feedback FTC design.
The contribution of this chapter is twofold. First, a new approach is proposed to
the design of locally optimal robust output-feedback controllers. Starting from
any initial feasible controller it performs local optimization over a suitably de-
fined non-convex function. The approach features the properties of guaranteed
convergence to a local optimum as well as applicability to a very wide range of
problems, namely such representable as BMI problems. The second contribu-
tion in the chapter is the development of a fast procedure for computing an ini-
tial feasible controller. The design objectives considered are H2, H∞, and pole-
placement constraints. This procedure consists of two steps: first an optimal ro-
bust state-feedback gain F is designed, which is consequently kept fixed at the
second step where the remaining controller matrices are designed. The com-
plete output-feedback controller design approach is demonstrated on a model
of one joint of a real-life space robotic manipulator.

65
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3.1 Introduction

In the last decade much research was focused on the development of new ap-
proaches to controller design (Boyd et al. 1994; Scherer et al. 1997; Gahinet 1996;
Gahinet et al. 1995; Palhares et al. 1996; Oliveira et al. 1999b; Kothare et al. 1996),
state estimation (Geromel 1999; Geromel et al. 2000; Geromel and Oliveira 2001;
Cuzzola and Ferrante 2001; Palhares et al. 1999), and system performance analy-
sis (Oliveira et al. 1999a; Palhares et al. 1997; Zhou et al. 1995) on the basis of LMIs
due to the recent development of computationally fast and numerically reliable
algorithms for solving convex optimization problems subject to LMI constraints.
In the cases when no uncertainty is considered in the model description, numer-
ous LMI-based approaches exist that address the problems of state-feedback
(Oliveira et al. 1999b; Palhares et al. 1996; Peres and Palhares 1995) and dynamic
output-feedback controller (Apkarian and Gahinet 1995; Gahinet 1996; Geromel
et al. 1999; Oliveira et al. 1999b) design for different design objectives. In these
approaches, in general, the controller state-space matrices are parametrized by
a set of matrices representing a feasible solution to a system of LMIs that de-
scribes the control objective, plus (often) the state-space matrices of the con-
trolled system. For an overview of the LMI methods for analysis and design of
control systems the reader is referred to Boyd et al. (1994); Scherer et al. (1997)
and the references therein.

Whenever the controller parametrization is not explicitly dependent on the
state-space matrices of the controlled system, generalization to polytopic un-
certainties is trivial. Such cases include the LMI-based state-feedback controller
design approaches toH2-control (Palhares et al. 1996; Kothare et al. 1996),H∞-
control (Palhares et al. 1996; Peres and Palhares 1995; Zhou et al. 1995), pole-
placement in LMI regions (Chilali et al. 1999; Scherer et al. 1997), etc. These,
however, require that the system state is measurable, thus imposing a severe re-
striction on the class of systems to which they are applicable.

Similar extension of most of the output-feedback controller design methods
to the structured uncertainty case is, unfortunately, not that simple due to the
fact that the controller parametrization explicitly depends on the state-space
matrices of the system, which are unknown (Apkarian and Gahinet 1995; Gahinet
1996; Masubuchi et al. 1998; Scherer et al. 1997). Clearly, whenever the uncer-
tainty is unstructured (e.g. high-frequency unmodelled dynamics), it can be re-
cast into the general linear fractional transformation (LFT) representation and
using the small gain theorem the design objective can be translated into con-
troller design in the absence of uncertainty (Zhou and Doyle 1998). Application
of this approach to systems with structured uncertainty, i.e. disregarding the
structure of the uncertainty, often turns out to be excessively conservative. To
overcome this conservatism µ-synthesis was developed (Zhou and Doyle 1998;
Balas et al. 1998), which consists of an iterative procedure (known as D − K it-
eration) where at each iteration two convex optimizations are executed - one in
which the controller K is kept fixed, and one in which a certain diagonal scaling
matrix D is kept fixed. This procedure, however, is not guaranteed to converge to
a local optimum because optimality in two fixed directions does not imply opti-
mality in all possible directions, and it may therefore lead to conservative results
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(VanAntwerp et al. 1997).

Recently, some attempts have been made towards the development of LMI-
based approaches to output-feedback controller design for systems with struc-
tured uncertainties in the context of robust quadratic stability with disturbance
attenuation (Kose and Jabbari 1999b), linear parameter-varying (LPV) systems
(Kose and Jabbari 1999a), positive real synthesis (Mahmoud and Xie 2000), and
H∞ control (Xie et al. 1992). In Kose and Jabbari (1999b) the authors develop a
two-step procedure for the design of output-feedback controllers for continuous-
time systems and provide conditions under which the two stages of the design
can be solved sequentially. These conditions, however, restrict the class of sys-
tems that can be dealt with by the proposed approach to minimum-phase, left-
invertible systems. The same idea has been used in Kose and Jabbari (1999a),
but extended to deal with LPV systems in which only some of the parameters are
measured and the others are treated as uncertainty. In Mahmoud and Xie (2000)
the output-feedback design of positive real systems is investigated by express-
ing the uncertainty in an LFT form and recasting the problem to a simplified,
but still non-linear, problem independent of the uncertainties. A possible way,
based on eigenvalue assignment, to solve the non-linear optimization problem
is proposed that determines the output-feedback controller. This approach is
applicable to square systems only. In the case when the uncertainty consists
of one full uncertainty block it was shown in Xie et al. (1992) how the problem
can be transformed into a standardH∞ problem along a line search for a single
scalar. However, as argued in Kose and Jabbari (1999b), this approach may turn
out to be too conservative in cases when the uncertainty contains repeated real
scalars.

It is well-known that most of the output-feedback controller design problems
are representable in terms of bilinear (or rather bi-affine) matrix inequalities
(VanAntwerp and Braatz 2000), which however are in general NP-hard (Toker
and Özbay 1995). This means that any algorithm which is guaranteed to find the
global optimum cannot be expected to have a polynomial time complexity.

The method proposed in this chapter belongs to the class of approaches that
directly aim at solving the BMI optimization problem at hand. There exist dif-
ferent approaches to the solution of this problem, which can be classified into
global (Beran et al. 1997; Fukuda and Kojima 2001; Goh et al. 1994; Tuan and
Apkarian 2000; Tuan et al. 2000a,b; VanAntwerp et al. 1997; Yamada and Hara
1998; Yamada et al. 2001) and local (Ibaraki and Tomizuka 2001; Iwasaki 1999;
Iwasaki and Rotea 1997; Hassibi et al. 1999; Grigoradis and Skelton 1996). Most
of the global algorithms to the BMI problem are variations of the Branch and
Bound Algorithm (Tuan and Apkarian 2000; Goh et al. 1994; Fukuda and Kojima
2001; VanAntwerp et al. 1997; Beran et al. 1997). Although the major focus of
all global search algorithms is the computational complexity, none of them is
polynomial-time due to the NP-hardness of the problem. As a result, these ap-
proaches can currently be applied only to problems of modest size (VanAntwerp
et al. 1997) with no more than just a few “complicating variables”1 (Tuan and Ap-
karian 2000). Thus, the global algorithms are not practical to output-feedback

1Generally speaking, this is the minimal number of variables in the BMI problem that, if kept
fixed, results in an LMI problem.
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controller design problems for polytopic systems, where even small problems
can result in lots of such complicating variables (for instance, in the case study
presented in Section 3.6 there are 40 complicating variables).

Most of the existing local approaches, on the other hand, are computation-
ally faster but, depending on the initial condition, may not converge to the global
optimum. The simplest local approach makes use of the fact that by fixing some
of the variables, the BMI problem becomes convex in the remaining variables,
and vice versa, and it iterates between them (Iwasaki 1999). This is also the idea
behind the well-known D − K iteration for µ-synthesis (Doyle 1983). In some
papers (Iwasaki 1999; Iwasaki and Rotea 1997; Iwasaki and Skelton 1995) the
search is performed in other, more suitably defined search directions. Never-
theless, these type of algorithms, called coordinate descent methods in Iwasaki
(1999), alternating SDP method in Fukuda and Kojima (2001), and the dual iter-
ation in Iwasaki (1999), are not guaranteed to converge to a local solution (Goh
et al. 1994; Fukuda and Kojima 2001; Yamada and Hara 1998).

Recently, interior point methods have also been developed for nonconvex
semidefinite programming (SDP) problems (Leibfritz and Mostafa 2002; Hol et al.
2003; Forsgren 2000). The interior point approach tries to find an approximate
solution to the nonconvex SDP problem by rewriting it as logarithmic barrier
function optimization problem. The approach then finds approximate solutions
to a sequence of barrier problems and in this way produces an approximate so-
lution to the original nonconvex SDP problem. In Leibfritz and Mostafa (2002) a
trust region method is proposed for the design of optimal static output-feedback
gains. This is a nonconvex BMI problem (Leibfritz 2001).

Another local approach is the so-called path-following method (Hassibi et al.
1999), which is based on linearization. The idea is that under the assumption of
small search steps the BMI problem can be approximated as an LMI problem by
making use of the first-order perturbation approximation (Hassibi et al. 1999). In
practise this approach can be used for problems where the required closed-loop
performance is not drastically better than the open-loop system performance, to
solve the actuator/sensor placement problem, as well as the controller topology
design problem (Hassibi et al. 1999). Similar is the continuation algorithm pro-
posed in Collins et al. (1999) that basically consists in iterating between two LMI
problems each obtained by linearization using first order perturbation approxi-
mations. Yet another local approach is the rank-minimization method (Ibaraki
and Tomizuka 2001). Although convergence is established for a suitably modi-
fied problem, there are no guarantees that the solution to this modified problem
will be feasible for the original BMI problem. The XY -centering algorithm, pro-
posed in Iwasaki and Skelton (1995) is also an alternative local approach, which
focusses on a subclass of BMI problems in which the non-convexity can be ex-
pressed in the form X = Y −1, and is thus applicable to a restricted class of con-
troller design problems. Finally, the method of centers (Goh et al. 1994) has guar-
anteed local convergence provided that a feasible initial condition is given. It
is, however, the computationally most involving approach, and it is also known
that it can experience numerical problems during some iterations (Fukuda and
Kojima 2001).

Similarly to the method of centers, the approach in this chapter performs
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local optimization over a suitably defined non-convex function at each iteration.
It enjoys the property of guaranteed convergence to a local optimum, while at
the same time is computationally faster and numerically more reliable than the
method of centers. In addition to that, a two-step procedure is proposed for
the design of an initially feasible controller. At the first step an optimal robust
mixedH2/H∞/pole-placement state-feedback gain F is designed. This gain F is
consequently kept fixed during the design of the remaining state-space matrices
of the dynamic output-feedback controller. Although the first step is convex, the
second one remains non-convex. However, by constraining a Lyapunov function
for the closed-loop system to have a block-diagonal structure, this second step
is easily transformed into an LMI optimization problem.

The chapter is organized as follows. In Section 3.2 the notation is defined
and the problem is formulated. The proposed algorithm for locally optimal con-
troller design is next presented in Section 3.3. For the purposes of its initializa-
tion, a computational scheme is proposed to find an initial feasible controller
in Section 3.4. Here a mixed H2/H∞/pole-placement criterion is considered. A
summary of the complete algorithm is given in Section 3.5. In Section 3.6 the de-
sign approach is tested on a case study with a diesel actuator benchmark model
and, in addition, a comparison is made between several existing methods for
local BMI optimization. Finally, Section 3.7 concludes the chapter.

3.2 Preliminaries and Problem Formulation

3.2.1 Notation

The symbol ⋆ in LMIs will denote entries that follow from symmetry. In addition
to that the notation Sym(A) = A + A∗ will also be used. Boldface capital letters
denote variable matrices appearing in matrix inequalities, and boldface small
letters – vector variables. The convex hull of a set of matrices S = {M1, . . . ,MN}
is denoted as co{S}, and is defined as the intersection of all convex sets con-
taining all elements of S. Also used is the notation 〈A,B〉 = trace(AT B) for any
matrices A and B of appropriate dimensions, and ‖A‖F denotes the Frobenius
norm of A. L2 is the space of square integrable signals. The notation ‖x‖2 is
used for the vector 2-norm (i.e. (xT x)1/2) as well as for the signal 2-norm (i.e.
(
∫∞

0
x(t)T x(t)dt)1/2 for continuous-time signal x, and (

∑∞
0 x(k)T x(k))1/2). The

set of eigenvalues of a matrix A will be denoted as λ(A), while for a complex
number z ∈ C, the complex conjugate is denoted as z̄. The direct sum of matri-
ces Ai, i = 1, 2, . . . , n will be denoted as

n⊕

i=1

Ai = A1 ⊕ · · · ⊕An ,






A1

. . .

An




 .

Also, vi will denote the i-th element of the vector v.
The projection onto the cone of symmetric positive-definite matrices is de-

fined as
Π+[A]

.
= arg min

S≥0
‖A− S‖F . (3.1)
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Similarly, the projection onto the cone of symmetric negative-definite matrices
is defined as

Π−[A]
.
= arg min

S≤0
‖A− S‖F . (3.2)

These projections have some useful properties summarized in Chapter 2, Lemma
2.1 on page 36.

Finally, for two matrices A = [aij ] ∈ R
m×n and B ∈ R

p×q, the Kronecker
product of A and B is defined as

A⊗B
.
=






a11B . . . a1nB
...

. . .
...

am1B . . . amnB




 ∈ R

mp×nq.

In the remaining part of this section we summarize some existing results for
system analysis and controller synthesis which lie at the basis of the develop-
ments in the next Section.

3.2.2 Output-Feedback Passive FTC

In the introductory Chapter 1 the problem of passive FTC was defined in (1.19)
on page 26 as the problem of designing a controller that achieves robust closed-
loop stability and performance for certain faults f and model uncertainties δ. As
in Chapter 2, we represent here f and δ as one uncertainty

∆ =

[
δ
f

]

,

so that problem (1.19) becomes equivalent to the following worst-case mini-
mization problem

(PO) : K∗ = arg min
K

max
∆∈∆

J(G∆(σ),K). (3.3)

In Chapter 2 this problem was considered in the state-feedback case for which it
can be rewritten in the form of a robust LMI. As argued in the introduction above,
such LMI representation is, unfortunately, not possible in the output-feedback
case. The later is considered in this chapter in a deterministic setting (as op-
posed by the probabilistic setting from Chapter 2).

To be more specific, this chapter focuses on the problem (3.3) in the case
when the controller K = K(σ) is a dynamic system with the same order as that of
the plant (i.e. full order controller). Its input is the measured output of the con-
trolled system. The plant G∆(σ) may either be discrete-time or continuous-time
system. Furthermore, polytopic uncertainty representation is assumed; in other
words, if (A∆, B∆, C∆,D∆) is the state-space representation of G∆(σ), then it is
assumed that N (N <∞) vertex systems (Ai, Bi, Ci,Di) are given such that

{[
A∆ B∆

C∆ D∆

]

: ∆ ∈∆

}

︸ ︷︷ ︸

M

⊆ co

{[
Ai Bi

Ci Di

]

: i = 1, 2, . . . , N.

}

︸ ︷︷ ︸

Sco
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Remark 3.1 We note here that assuming the uncertainty as polytopic might lead
to the introduction of conservatism when the polytopic set Sco is not exactly equal
to the real uncertainty setM, i.e. in cases when Sco/M 6= ∅.

Finally, the performance index J(·, ·) in (3.3) considered in this chapter repre-
sents a multiobjective H2/H∞/pole-placement design problem. Before formu-
lating this worst-case optimization problem mathematically we proceed in the
next section by presenting some existing results for robust performance analysis
of uncertain systems that will be useful later on in the chapter.

3.2.3 H2 andH∞ Norm Computation for Uncertain Systems

Consider the uncertain state-space model

Sa(σ,∆) :

{
σx = A∆x + B∆ξ

z = C∆x + D∆ξ
(3.4)

where x(t) ∈ R
n is the system state, z(t) ∈ R

nz is the controlled output of the
system, and ξ(t) ∈ R

nξ is the disturbance to the system, and where the symbol σ
represents the s-operator (i.e. the time-derivative operator) for continuous-time
systems, and the z-operator (i.e. the shift operator) for discrete-time systems.
Define the matrix

M∆
an

.
=

[
A∆ B∆

C∆ D∆

]

(3.5)

where the subscript “an” denotes that it will be used for the purposes of analysis
only. Later on, a similar matrix for the synthesis problem will be defined. The
matrices (A∆, B∆, C∆,D∆) in (3.4) are assumed unknown, not measurable, and
possibly time-varying, but are known to lie in a given convex setMan, defined
as

Man
.
= co

{[
A1 B1

C1 D1

]

, . . . ,

[
AN BN

CN DN

]}

. (3.6)

The following Lemma, which can be found in e.g. (Chilali et al. 1999), can be
used to check whether the eigenvalues of a matrix are all located inside an LMI
region.

Lemma 3.1 LetA be a real matrix, and define the LMI region

D
.
= {z ∈ C : LD + Sym(zMD) < 0}, (3.7)

for some given real matrices LD = LT
D and MD. Then λ(A) ⊂ D if and only if there

exists a matrix P = P T > 0 such that

LD ⊗ P + Sym(MD ⊗ (PA)) < 0. (3.8)

The class of LMI regions, defined in Equation (3.8), is fairly general – it can
represent convex regions that are symmetric with respect to the real axis (Gahinet
et al. 1995).

In order to be able to deal with linear time-varying systems (LTV), like those
that are subject to faults, we need to extend the notions of H2 and H∞ norms
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Figure 3.1: D-stability region.

that are usually defined for linear time-invariant (LTI) systems. In addition to
that, since the notion of pole is also not defined for LTV systems we will make
use of the so-calledD-stability.

Consider the LTV system (3.4) described by the operator Sa(σ,∆) that maps
the system input ξ to the system output z. The H∞-norm of Sa(σ,∆) is then
defined as the L2-induced gain (Apkarian and Gahinet 1995; Scherer 1996)

‖Sa(σ,∆)‖∞
.
= sup

ξ∈L2

‖Sa(σ,∆)ξ‖2
‖ξ‖2

.

For LTI systems and in the absence of the uncertainty the L2-induced gain coin-
cides with the standardH∞-norm.

TheH2-norm can also be extended to LTV systems in the spirit of Peters and
Stoorvogel (1994); Scherer (1996). This can be done by using the stochastic inter-
pretation of theH2-norm. With the input signal ξ being a white Gaussian noise
theH2-norm of the operator Sa(σ,∆) is defined as

‖Sa(σ,∆)‖22
.
= sup E 〈Sa(σ,∆)ξ,Sa(σ,∆)ξ〉 ,

The so definedH2-norm represents the maximum output variance when the in-
put is a white Gaussian noise, and is thus a generalization of the genuine H2-
norms of LTI systems (Scherer 1996).

For LTV systems the notion of pole (or pole-placement) is undefined. For that
reason we make use of the notion of D-stability of a time-varying matrix A(∆)
which is equivalent to the requirement that at each time instant the eigenvalues
of the matrix are located in the LMI region D. For continuous-time systems, in
particular, if the regionD is contained in the half-plane {z ∈ C : 2α + z + z̄ < 0}
(see Figure 3.1) for some positive scalar α, then exponential decay with decay
rate α of the transients is guaranteed for all possible trajectories ∆(t) (Chilali
et al. 1999), i.e. ∃M > 0 such that

‖eA(∆(t))t‖ ≤Me−αt.

In (Scherer et al. 1997; Masubuchi et al. 1998) LMI conditions are provided
for the evaluation of the H2 and H∞ norm of the system (3.4) in the case when
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there is no uncertainty present in the system, i.e. for the case when the matrix
M∆

an in (3.5) is exactly known and time-invariant. The following two results are
immediate generalizations to the case when M∆

an is only known to lie in a certain
convex setMan, and as such will be left without proof. We note that these results
are also applicable to LTV systems in view of the extensions of the norm defi-
nitions above (Apkarian and Gahinet 1995; Apkarian and Adams 1998; Scherer
et al. 1997; Scherer 1996; Chilali et al. 1999). Define

L(C∆,W ,P , γ) = (γ − trace(W ))⊕

[
W C∆

⋆ P

]

,

MCT (A∆, B∆,P ) =

[
−Sym(PA∆) PB∆

⋆ I

]

,

MDT (A∆, B∆,P ) =





P PA∆ PB∆

⋆ P 0
⋆ ⋆ I



 .

(3.9)

Lemma 3.2 (H2 norm) Consider the system (3.4) with D∆ = 0. Then

sup
M∆

an∈Man

‖Sa(σ,∆)‖22 < γ

if there exist matrices P = P T and W = W T such that for all M∆
an ∈Man

L(C∆,W ,P , γ)⊕MCT (A∆, B∆,P ) > 0, (continuous case),
L(C∆,W ,P , γ)⊕MDT (A∆, B∆,P ) > 0, (discrete case).

(3.10)

Lemma 3.3 (H∞ norm) Consider the system (3.4). Then

sup
M∆

an∈Man

‖Sa(σ,∆)‖2∞ < γ

if there exists a matrix P = P T such that for all M∆
an ∈Man

P ⊕

[

MCT (A∆, B∆,P )
[

C∆, D∆
]T

⋆ γI

]

> 0, (cont. case),
[

MDT (A∆, B∆,P )
[

0, C∆, D∆
]T

⋆ γI

]

> 0, (discrete case).

(3.11)

The infinite number of LMIs in Lemmas 3.2 and 3.3 over all possible elements
of the setMan can be substituted by a finite number of LMIs by using the fact
that the set Man is convex. This can be achieved by substituting the matrices
(Ai, Bi, Ci,Di) from (A∆, B∆, C∆,D∆) in the LMIs (3.10) and (3.11), and then
searching for a feasible solution for all i = 1, . . . , N .

Remark 3.2 Note that due to the fact that Lemmas 3.2 and 3.3 provide only suffi-
cient conditions. The reason for that is that the same Lyapunov matrix P is used
for all values of the uncertainties. This constraint on the Lyapunov matrix leads
to the introduction of conservatism that in some applications might be too high.
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3.2.4 Problem Formulation

We next focus our attention to the synthesis problem. To this end, consider the
following uncertain system

Ss(σ,∆) :







σx = A∆x + B∆
ξ ξ + B∆

u u

z = C∆
z x + D∆

zξξ + D∆
zuu

y = C∆
y x + D∆

yξξ + D∆
yuu

(3.12)

where the signals x, ξ, and z have the same meaning and the same dimensions
as in (3.4), and where u ∈ R

m is the control action, and y ∈ R
p is the measured

output.
Similarly as in Section 3.2.3, we define the matrix

M∆
syn

.
=





A∆ B∆
ξ B∆

u

C∆
z D∆

zξ D∆
zu

C∆
y D∆

yξ D∆
yu



 (3.13)

where the subscript “syn” denotes that it will now be used for the purposes of
synthesis. We also define the convex set

Msyn
.
= co











Ai Bξ,i Bu,i

Cz,i Dzξ,i Dzu,i

Cy,i Dyξ,i Dyu,i



 : i = 1, 2, . . . , N.






. (3.14)

Interconnected to system (3.12) is the following full-order dynamic output-
feedback controller

Cσ :

{
σxc = Acx

c + Bcy
u = Fxc (3.15)

with xc ∈ R
n its state. This yields the closed-loop system

Scl(σ,∆) :

{
σxcl = A∆

clxcl + B∆
cl ξ

z = C∆
cl xcl + D∆

clξ
(3.16)

where it is denoted xT
cl = [xT , (xc)T ], and

[
A∆

cl B∆
cl

C∆
cl D∆

cl

]

.
=





A∆ B∆
u F B∆

ξ

BcC
∆
y Ac + BcD

∆
yuF BcD

∆
yξ

C∆
z D∆

zuF D∆
zξ



 . (3.17)

This chapter addresses the following problem.

Multiobjective Design: Consider the system (3.12). Given positive scalars α2

and α∞ and a convex setMsyn, defined in Equation (3.14), find constant
matrices Ac, Bc, and F , parametrizing the controller (3.15), that solve the
following constrained optimization problem

min
γ2,γ∞,Ac,Bc,F

α2γ2 + α∞γ∞

subject to:

H2 objective: sup
M∆

syn∈Msyn

‖L2(Scl(σ,∆)−D∆
cl )R2‖

2
2 < γ2,

H∞ objective: sup
M∆

syn∈Msyn

‖L∞Scl(σ,∆)R∞‖
2
∞ < γ∞,

Pole-placement: λ(A∆
cl) ∈ D, ∀M∆

syn ∈Msyn.

(3.18)
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where the operator Scl(σ,∆) is defined in (3.16), and where the matrices
L2, R2, L∞, and R∞, are used to select the desired input-output channels
that need to satisfy the required constraint in (3.18).

As discussed in the introduction, this problem is not convex and is NP-hard.
In the next section we will present a new algorithm which can be used for find-
ing a locally optimal solution to the problem defined in (3.18). As most local
approaches, this approach requires an initially feasible solution from which the
local optimization is initiated. For the purposes of its initialization, a computa-
tionally fast approach based on LMIs for finding an initially feasible controller is
later on proposed in Section 3.4. A summary of the complete algorithm is given
in Section 3.5.

3.3 Locally Optimal Robust Controller Design

It is well-known that for systems with polytopic uncertainty the output-feedback
controller design problem can be written as BMIs in the general form (3.20)
(VanAntwerp and Braatz 2000). In this section a method for solving BMI prob-
lems is proposed. To this end, define the following N biaffine functions

BMI(k)(x,y)
.
= F

(k)
00 +

N1∑

i=1

F
(k)
i0 xi +

N2∑

j=1

F
(k)
0j yj +

N1∑

i=1

N2∑

j=1

F
(k)
ij xiyj , (3.19)

where F
(k)
ij = (F

(k)
ij )T , i = 0, 1, . . . , N1, j = 0, 1, . . . , N2, k = 1, . . . ,M are given

symmetric matrices. In this chapter we consider the following BMI optimization
problem

(P) :







min γ, over x, y, and γ

subject to BMI(k)(x,y) ≤ 0, k = 1, 2, . . . ,M,
〈c,x〉+ 〈d,y〉 ≤ γ,
x ≤ x ≤ x,
y ≤ y ≤ y

(3.20)

where x, x ∈ R
N1 and y, y ∈ R

N2 are given vectors with finite elements. This

problem is known to be NP-hard (Toker and Özbay 1995). The bounds on the
variables x and y in (3.20) are included here for technical reasons that will be-
come clear shortly. The problem of selecting these bounds in practise is not crit-
ical – taking the upper bounds large enough (e.g. 1010), and the lower bounds
small enough is often sufficient. Notice that in this way one could also ensure,
for implementation reasons, that the resulting controller does not have exces-
sively large entries in its state-space matrices.

It should also be pointed out that the BMI problem defined in (3.20) actually
addresses a wider class of problems than those represented by (3.18), e.g. the
design of reduced order output-feedback control (Safonov et al. 1994). However,
the focus of the chapter is restricted to (3.18) since the initial controller design
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method, discussed later on in Section 3.4, is developed only for the case of full
order output-feedback control problems.

Let us, for now, consider the feasibility problem for a fixed γ. Denote

BMI(M+1)(x,y)
.
= 〈c,x〉+ 〈d,y〉 − γ,

BMI(M+2)(x,y)
.
= x− x, BMI(M+3)(x,y)

.
= x− x,

BMI(M+4)(x,y)
.
= y − y, BMI(M+5)(x,y)

.
= y − y,

and let N = M + 5. The feasibility problem is then defined as

(FP) :







Find (x,y)

such that
⊕N

k=1 BMI
(k)(x,y) ≤ 0.

(3.21)

Define the following cost function

vγ(x,y)
.
=

∥
∥
∥
∥
∥
Π+

[
N⊕

k=1

BMI(k)(x,y)

]∥
∥
∥
∥
∥

2

F

≥ 0. (3.22)

From the definition of the projection Π+[·], and from the properties of the Frobe-
nius norm we can write

vγ(x,y) =

N∑

k=1

∥
∥
∥Π+

[

BMI(k)(x,y)
]∥
∥
∥

2

F

.
=

N∑

k=1

v(k)
γ (x,y). (3.23)

It is therefore clear that

(FP) is feasible ⇔ 0 = min
x,y

vγ(x,y).

In this way we have rewritten the BMI feasibility problem (FP) as an opti-
mization problem, where the goal is now to find a local minimum of vγ . However,
the function vγ(x,y) is not convex. Even worse, it may have multiple local min-
ima. Now, if (xopt,yopt) is a local minimum for vγ and is such that vγ(xopt,yopt) =
0, then (xopt,yopt) is also a feasible solution to (FP). However, if (xopt,yopt) is
such that vγ(xopt,yopt) > 0, then we cannot say anything about the feasibility of
(FP). The idea is then to start from a feasible solution for a given γ, and then
apply the method of bisection over γ to achieve a local minimum with a desired
precision, at each iteration searching for a feasible solution to (FP). A more ex-
tensive description of this bisection algorithm is provided in Section 3.5.

Let us now concentrate on the problem of finding a local solution to

min
x,y

vγ(x,y). (3.24)

The goal is to develop an approach that has a guaranteed convergence to a lo-
cal optimum of vγ(x,y). To this end, we first note that the function vγ(x,y) is
differentiable, and we derive an expression for its gradient.
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Theorem 3.1 With continuously differentiable G : R
Nv 7→ R

q×q, G = GT , and
f : R

q×q 7→ R defined as f(M) = ‖Π+[M ]‖2F , the function

(f ◦G)(v)
.
= ‖Π+[G(v)]‖2F ,

is differentiable, and its gradient

∇(f ◦ G)(v)
.
=

[
∂

∂v1
,

∂

∂v2
, . . .

∂

∂vNv

]T

(f ◦ G)(v),

is given by
∂

∂vi
(f ◦G)(v) = 2

〈

Π+[G(v)],
∂

∂vi
G(v)

〉

. (3.25)

Proof: Using the properties of the projection Π+[·] (see Lemma 2.1 on page 36)
we infer for any symmetric matrices G and ∆G, that

f ◦ (G + ∆G) = ‖Π+[G + ∆G]‖2F
= ‖G + ∆G−Π−[G + ∆G]‖2F = min

S≤0
‖G + ∆G− S‖2F

≤ ‖G + ∆G−Π−[G]‖2F = ‖Π+[G] + ∆G‖2F
= ‖Π+[G]‖2F + 2〈Π+[G],∆G〉+ ‖∆G‖2F .

On the other hand,

f ◦ (G + ∆G) = ‖Π+[G + ∆G]‖2F = ‖G + ∆G−Π−[G + ∆G]‖2F
= ‖Π+[G] + Π−[G] + ∆G−Π−[G + ∆G]‖2F
≥ ‖Π+[G]‖2F + 2〈Π+[G],∆G〉+ 2〈Π+[G],Π−[G]〉+ 2〈Π+[G],−Π−[G + ∆G]〉
≥ ‖Π+[G]‖2F + 2〈Π+[G],∆G〉.

Thus we have f ◦(G+∆G) = f ◦G+2〈Π+[G],∆G〉+o(‖∆G‖F ) for any symmetric
∆G.

Now, take ∆G(v)
.
= G(v + ∆v) − G(v). Since G(v) is continuously differen-

tiable it follows that

G(v + ∆v) = G(v) +

Nv∑

i=1

(
∂

∂vi
G(v)

)

∆vi + o(‖∆v‖2).

Therefore

(f ◦G)(v + ∆v) = (f ◦G)(v) + 2

Nv∑

i=1

(〈

Π+[G(v)],
∂

∂vi
G(v)

〉

∆vi

)

+ o(‖∆v‖2).

Hence (f ◦G) is differentiable and its partial derivatives are given by the expres-
sions (3.25). �

The partial derivatives of our original function vγ(x,y) can then be directly
derived using the result of Theorem 3.1:

∂

∂xi
vγ(x,y) = 2

N∑

k=1

〈

Π+
[

BMI(k)(x,y)
]

, F
(k)
i0 +

N2∑

j=1

F
(k)
ij yj

〉

(3.26)

∂

∂yj

vγ(x,y) = 2

N∑

k=1

〈

Π+
[

BMI(k)(x,y)
]

, F
(k)
0j +

N1∑

i=1

F
(k)
ij xi

〉

(3.27)
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Note that these partial derivatives are continuous functions (see Lemma 2.1),
so that vγ ∈ C1. Note also, that a lower bound on the cost function in (3.20) can
always be obtained by solving the so-called relaxed LMI optimization problem
(Tuan and Apkarian 2000)







γLB = min
x,y
〈c,x〉+ 〈d,y〉,

subject to: x ∈ [x, x],y ∈ [y, y],wij ∈ [wij , wij ]

F
(k)
00 +

N1∑

i=1

F
(k)
i0 xi +

N2∑

j=1

F
(k)
0j yj +

N1∑

i=1

N2∑

j=1

F
(k)
ij wij ≤ 0,

for k = 1, 2, . . . ,M,

(3.28)

where
wij = min{xiyj

, xiyj , xiyj
, xiyj},

wij = max{xiyj
, xiyj , xiyj

, xiyj}.

If this problem is not feasible, then the original BMI problem is also not feasible.
Now that it was shown that the function vγ is C1 and an expression for its gra-

dient has been derived, a quasi-Newton type optimization algorithm, adopted
from (Li and Fukushima 2001), can be used for finding a local minimum of vγ ∈
C1. It is summarized in Algorithm 3.1 on page 79.

As a stopping condition usually ‖g(k)‖ ≤ ǫ is used for some sufficiently small
scalar ǫ.

The convergence of this is established in (Li and Fukushima 2001) under the
assumption that,

(a) the level set Ω = {x,y : vγ(x,y) ≤ vγ(x(0),y(0)))} is bounded,

(b) vγ(x,y) is continuously differentiable on Ω, and

(c) there exists a constant L > 0 such that the global Lipschitz condition holds:

‖g(x,y)− g(x̄, ȳ)‖2 ≤ L

∥
∥
∥
∥

[
x

y

]

−

[
x̄

ȳ

]∥
∥
∥
∥

2

, ∀(x,y), (x̄, ȳ) ∈ Ω.

For the problem considered in this section the level set Ω is compact (see equa-
tion (3.20)), so that condition (a) holds. Condition (b) was shown in Theorem
3.1. Condition (c) follows by observing that the projection Π+[·] is Lipschitz,

and hence, since BMI(k)(x,y) is smooth, the functions in (3.26) and (3.27) sat-
isfy a local Lipschitz condition. The compactness of the set Ω then implies the
desired global Lipschitz condition.

Note that the optimization problem discussed above applies to a more gen-
eral class of problems with smooth nonlinear matrix inequality (NMI) constraints.
However, finding an initially feasible solution to start the local optimization is a
rather difficult problem, for which reason NMI problems fall outside the scope
of this chapter. It also needs to be noted here that any algorithm with guaranteed
convergence to a local minimum could be used instead of the one presented in
Algorithm 3.1.

In the next section we focus on the problem of finding an initial feasible so-
lution to the BMI optimization problem.
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Algorithm 3.1 (Cautious BFGS method (Li and Fukushima 2001))
INITIALIZATION: (x(0), y(0)), SYMMETRIC POSITIVE DEFINITE MATRIX

B(0) ∈ R
(N1+N2)×(N1+N2), CONSTANTS 0 < σ1, ρ < 1, α > 0, AND

ε > 0. SET k = 0, DENOTE THE GRADIENT OF vγ(x,y) EVALUATED AT

(x(k),y(k)) AS

g(k) = g(x(k),y(k))

=
[

∂
∂x1

. . . ∂
∂xN1

∂
∂y1

. . . ∂
∂yN2

]T

vγ(x(k),y(k)),

WITH THE PARTIAL DERIVATIVES GIVEN BY THE EXPRESSIONS (3.26)
AND (3.27). PERFORM THE STEPS

Step 1. SOLVE THE EQUATION B(k)p(k) + g(k) = 0 TO GET p(k) ∈ R
(N1+N2).

PARTITION p(k) =

[
px

py

]

WITH px ∈ R
N1 AND py ∈ R

N2 .

Step 2. DETERMINE A STEP-SIZE λ(k) > 0 BY USING THE ARMIJO-TYPE

LINE SEARCH, I.E. TAKE λ(k) AS THE LARGEST VALUE IN THE SET

{ρi : i = 0, 1, . . . } SUCH THAT THE FOLLOWING INEQUALITY HOLDS:

vγ(x(k) + λ(k)px,y(k) + λ(k)py) ≤ vγ(x(k),y(k))+ σ1λ
(k)(g(k))T p(k).

Step 3. TAKE

x(k+1) = x(k) + λ(k)px,
y(k+1) = y(k) + λ(k)py.

Step 4. IF

(
(t(k))T s(k)

‖s(k)‖2
2
≥ ε‖g(k)‖α2

)

THEN COMPUTE

s(k) = [(λ(k)px)T , (λ(k)py)T ]T ,
t(k) = g(k+1) − g(k),

B(k+1) = B(k) − B(k)s(k)(s(k))T B(k)

(s(k))T B(k)s(k) + t(k)(t(k))T

(t(k))T s(k)

ELSE TAKE B(k+1) = B(k).

Step 4. SET k ← k + 1 AND GO TO STEP 1.

3.4 Initial Robust Multiobjective Controller Design

In this Section, a two-step procedure is presented for the design of an initial fea-
sible robust output-feedback controller. It can be summarized as follows:

Step 1: Design a robust state-feedback gain matrix F such that the multiobjec-
tive criterion of the form (3.18) is satisfied for the closed-loop system with
state-feedback control u = Fx. This problem is convex and is considered
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in Subsection Section 3.4.1.

Step 2: Plug the state-feedback gain matrix F , computed at Step 1, into the orig-
inal closed-loop system (3.16), and search for a solution to the multiobjec-
tive control problem, defined in Equation (3.18), in terms of the remaining
unknown controller matrices Ac and Bc. This problem, in contrast to the
one in Step 1 above, remains non-convex. It is discussed in Section 3.4.2.

In the remaining part of this Section we proceed with proposing a solution to the
problems in the two steps above.

3.4.1 Step 1: Robust Multiobjective State-Feedback Design

The state-feedback case for the system (3.12) is equivalent to taking C∆
y = In,

D∆
yξ = 0n×nξ

, D∆
yu = 0n×m, so that y ≡ x. Furthermore, we consider the constant

state-feedback controller u = Fx, which results in the closed-loop system

Tsf (σ,∆) :

{
σxsf = (A∆ + B∆

u F )xsf + B∆
ξ ξ,

z = (C∆
z + D∆

zuF )xsf + D∆
zξξ.

(3.29)

The following Theorem can be used for robust multiobjective state-feedback
design for discrete-time and continuous-time systems. The proof follows after
rewriting Lemmas 3.2 and 3.3 for the closed-loop system (3.29) as LMIs in

Q = P−1,

with subsequent change of variables. It will be omitted here (Scherer et al. 1997;
Oliveira et al. 1999b).

Theorem 3.2 (Robust Multiobjective State-Feedback Control) Consider the sys-
tem (3.12), and assume that C∆

y = In, D∆
yξ = 0n×nξ

, D∆
yu = 0n×m. Consider the

controller u = Fx resulting in the closed-loop system Tsf (σ,∆) in equation (3.29).
Given matrices L2, R2, L∞, and R∞, the conditions

sup
M∆

syn∈Msyn

‖L2(Tsf (σ,∆)−D∆
zξ)R2‖

2
2 < γ2,

sup
M∆

syn∈Msyn

‖L∞Tsf (σ,∆)R∞‖
2
∞ < γ∞,

λ(A∆ + B∆
u F ) ∈ D, ∀M∆

syn ∈Msyn.

(3.30)

hold if there exist matrices Q = QT , W = W T , R = RT , and L such that for all
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i = 1, . . . , N the following LMIs hold

PP: (−Q)⊕ (LD ⊗Q + Sym(MD ⊗ (AiQ + Bu,iL))) < 0, (3.31)

H2: (γ2 − trace(R))⊕

[
R L2(Cz,iQ + Dzu,iL)
⋆ Q

]

⊕

⊕







[
−Sym(AiQ + Bu,iL) Bξ,iR2

⋆ I

]

> 0 (cont. case)





Q AiQ + Bu,iL Bξ,iR2

⋆ Q 0
⋆ ⋆ I



 > 0 (discr. case).

(3.32)

H∞:







Q⊕




−Sym(AiQ + Bu,iL) Bξ,iR∞ (QCT
z,i + LT DT

zu,i)L
T
∞

⋆ I RT
∞DT

zξ,iL
T
∞

⋆ ⋆ γ∞I



 > 0

(continuous case)







Q AiQ + Bu,iL Bξ,iR∞ 0

⋆ Q 0 (QCT
z,i + LT DT

zu,i)L
T
∞

⋆ ⋆ I RT
∞DT

zξ,iL
T
∞

⋆ ⋆ ⋆ γ∞I







> 0.

(discrete case)

(3.33)

The state-feedback gain matrix F is then given by F = LQ−1.

3.4.2 Step 2: Robust Multiobjective Output-Feedback Design

In what follows we assume that the optimal state-feedback gain F has already
been computed at Step 1. In contrast to Step 1, the problem defined in Step 2 of
the algorithm at the beginning of Section 3.4 is certainly non-convex in the vari-
ables P , W , Ac, and Bc since application of Lemmas 3.2 and 3.3 to the closed-
loop system in Equation (3.17) leads to non-linear matrix inequalities due to the
fact that the variables Ac and Bc appear in the closed-loop system matrices A∆

cl

and B∆
cl (for which reason the last two are typed in boldface).

Note that the function V = xT
clPxcl acts as a Lyapunov function for the closed-

loop system. This can easily be seen by observing that the matrix inequalities
in Lemmas 3.2 and 3.3, when applied to the closed-loop system (3.16) imply
(A∆

cl)
T PA∆

cl − P < 0 for the discrete-time case, and PA∆
cl + (A∆

cl)
T P < 0 for

the continuous-time case.
The purpose of this section is to show how by introducing some conservatism

by means of constraining the Lyapunov matrix P to have block-diagonal struc-
ture

P =

[
X

Y

]

, (3.34)

the nonlinear matrix inequalities in question can be written as LMIs. However,
it can easily be seen that a necessary condition for the existence of a structured
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Lyapunov matrix of the form (3.34) for A∆
cl defined in (3.17) is that the matrix

A∆ is stable for all M∆
syn ∈ Msyn. However, this restriction can be removed by

introducing a change of basis of the state vector of the closed-loop system

x̄cl = Txcl =

[
x

x− xc

]

, (3.35)

represented by the similarity transformation matrix

T =

[
In 0
In −In

]

= T−1.

This changes the state-space matrices of the closed-loop system to

(Ā
∆
cl , B̄

∆
cl , C̄

∆
cl , D̄

∆
cl ) = (TA∆

clT, TB∆
cl , C

∆
cl T,D∆

cl ),

with

Ā
∆
cl =

[
A∆ + B∆

u F −B∆
u F

A∆ + B∆
u F − BcC∆

y − Ac − BcD∆
yuF Ac + BcD∆

yuF − B∆
u F

]

B̄
∆
cl =

[
B∆

ξ

B∆
ξ −BcD

∆
yξ

]

C̄∆
cl =

[
C∆

z + D∆
zuF −D∆

zuF
]

D̄∆
cl = D∆

zξ

(3.36)

Now, searching for a structured Lyapunov matrix for this (equivalent) closed-
loop system only necessitates the stability of the matrix (A∆+B∆

u F ) for all M∆
syn ∈

Msyn, which is guaranteed to hold by the design of the state-feedback gain F .

Remark 3.3 An interesting interpretation of the transformation (3.35) and the
structural constraint on P can be given as follows. If we consider the closed-loop
system in the new state basis (3.35), and we restrict the Lyapunov matrix to have a
block-diagonal structure as in (3.34) then the quadratic Lyapunov function takes
the form

V = x̄T
clP x̄cl = xT Xx + (x− xc)T Y (x− xc).

Therefore, quadratic stability would imply that the controller state xc converges to
the system state x, so that the transformation (3.35) with the structural constraint
(3.34) could be viewed as imposing an “observer structure” in the controller. For
instance, for LTI systems with no uncertainty the well-known LQG controller has
such an observer structure since it is based on Kalman filter and a state-feedback
gain matrix. It is well known that due to the separation principle these two com-
ponents of the LQG controller can be designed independently from each other.
Since the state-feedback gain stabilizes the system it means that there exists X > 0
such that xT Xx > 0 is a Lyapunov function for the system. On the other hand, the
Kalman filter also guarantees stability of the estimation error model, so that there
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exists Y > 0 such that (x − xc)T Y (x − xc) > 0 is a Lyapunov function for the es-
timation error model. Hence the LQG controller also results in such a diagonally-
structured Lyapunov matrix as in equation (3.34) for the closed-loop system state
formed by augmenting the system state with the estimation error (3.35). In the
uncertainty case, considered here, the observer and the state-feedback controller
are coupled (i.e. they will not be designed independent of each other), but still im-
posing such an “observer structure” in the controller could be motivated from the
uncertainty-free case.

We are now ready to present the following result.

Theorem 3.3 (Robust Multiobjective Output-Feedback Control) Consider the
closed-loop system Scl(σ,∆) (3.16), formed by interconnecting the plant (3.12)
with the dynamic output-feedback controller (3.15), in which the state-feedback
gain matrix F is given. Then given matrices L2, R2, L∞, and R∞ of appropriate
dimensions, the conditions

sup
M∆

an∈Man

‖L2(Scl(σ,∆)−D∆
cl )R2‖

2
2 < γ2,

sup
M∆

an∈Man

‖L∞Scl(σ,∆)R∞‖
2
∞ < γ∞,

λ(A∆
cl) ∈ D, ∀M∆

an ∈Man.

(3.37)

hold if there exist matrices W = W T , X = XT , Y = Y T , Z and G such that the
following system of LMIs has a feasible solution for all i = 1, . . . , N

PP: (−P )⊕ (LD ⊗ P + Sym(MD ⊗M i)) < 0, (3.38)

H2: (γ2 − trace(W ))⊕

[
W L2C̄cl,i

⋆ P

]

⊕

⊕







[
−Sym(M i) N iR2

⋆ I

]

> 0 (continuous case)





P M i N iR2

⋆ P 0
⋆ ⋆ I



 > 0 (discrete case).

(3.39)

H∞:







P ⊕





−Sym(M i) N iR∞ C̄T
cl,iL

T
∞

⋆ I RT
∞DT

zξ,iL
T
∞

⋆ ⋆ γ∞I



 > 0

(continuous case)







P M i N iR∞ 0
⋆ P 0 C̄T

cl,iL
T
∞

⋆ ⋆ I RT
∞DT

zξ,iL
T
∞

⋆ ⋆ ⋆ γ∞I







> 0

(discrete case)

(3.40)
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where the matrices M i, N i, P , and C̄cl,i are defined as

M i =
[

X(Ai + Bu,iF ) −XBu,iF
Y (Ai + Bu,iF )−Z −G(Cy,i + Dyu,iF ) Z + GDyu,iF − Y Bu,iF

]

N i =

[
XBξ,i

Y Bξ,i −GDyξ,i

]

, P =

[
X

Y

]

,

C̄cl,i =
[

Cz,i + Dzu,iF −Dzu,iF
]
.

(3.41)

Furthermore, the unknown matrices Ac and Bc of the controller (3.15) are given
by

Ac = Y −1Z

Bc = Y −1G
(3.42)

Proof: From Lemmas 3.1, 3.2 and 3.3 it follows that a sufficient condition for
(3.37) is that the following matrix inequalities are feasible for all values of the
uncertainty

PP: (−P )⊕ (LD ⊗ P + Sym(MD ⊗ (P Ā∆
cl))) < 0, (3.43)

H2: L(L2C̄
∆
cl ,W ,P , γ)⊕

{
MCT (Ā∆

cl , B̄
∆
cl R2,P ) > 0 (continuous case)

MDT (Ā∆
cl , B̄

∆
cl R2,P ) > 0 (discrete case)

(3.44)

H∞:







P ⊕




MCT (Ā∆

cl , B̄
∆
cl R∞,P )

[
(C̄∆

cl )
T LT

∞

RT
∞(D̄∆

cl )
T LT

∞

]

⋆ γI



 > 0

(continuous case)







MDT (Ā∆
cl , B̄

∆
cl R∞,P )





0
(C̄∆

cl )
T LT

∞

RT
∞(D̄∆

cl )
T LT

∞





⋆ γI







> 0

(discrete case)

(3.45)

Next, let the matrices (Ācl,i, B̄cl,i, C̄cl,i, D̄cl,i) denote the closed-loop system (3.36)
that correspond to the i-th vertex of the convex polytope (3.14). Then, with P

defined as in (3.41) we can write

P Ā∆
cl =

[
X(A∆ + B∆

u F ) −XB∆
u F

Y (A∆ + B∆
u F )− Y Bc(C

∆
y + D∆

yuF )− Y Ac Y Ac + Y BcD
∆
yuF − Y B∆

u F

]

,

P B̄∆
cl =

[
XB∆

ξ

Y B∆
ξ − Y BcD

∆
yξ

]

.

Making the one-to-one change of variables

Y
[

Ac Bc

]
=
[

Z G
]
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Algorithm 3.2 (Robust Output-Feedback Controller Design) USE

THE RESULTS IN THEOREMS 3.2 AND 3.3 TO FIND AN INITIALLY

FEASIBLE CONTROLLER, REPRESENTED BY THE VARIABLES (x0,y0, γ0)
RELATED TO THE CORRESPONDING BMI PROBLEM (3.20). SET

(x∗,y∗, γ
(0)
UB) = (x0,y0, γ0). SOLVE THE RELAXED LMI PROBLEM

(3.28) TO OBTAIN γ
(0)
LB . SELECT THE DESIRED PRECISION (RELATIVE

TOLERANCE) TOL AND THE MAXIMUM NUMBER OF ITERATIONS

ALLOWED kmax. SET k = 1.

Step 1. TAKE γk =
γ
(k−1)
UB

+γ
(k−1)
LB

2 , AND SOLVE THE PROBLEM (xk,yk) =
arg min vγk

(x,y) STARTING WITH INITIAL CONDITION (x∗,y∗).

Step 2. IF vγk
(xk,yk) = 0 THEN SET (x∗,y∗, γ

(k)
UB) = (xk,yk, γk) ELSE SET

γ
(k)
LB = γk .

Step 3. IF |γ(k)
UB − γ

(k)
LB | < TOL|γ(k)

UB | OR k ≥ kmax THEN Stop

((x∗,y∗, γ
(k)
UB) IS THE BEST (LOCALLY ) FEASIBLE SOLUTION WITH THE

DESIRED TOLERANCE) ELSE SET k ← k + 1 AND GO TO Step 1.

results in PĀcl,i = M i, and PB̄cl,i = N i, where with the matrices M i and N i

defined as in (3.41), being linear in the new variables. Therefore the feasibility of
(3.43) is equivalent to feasibility of (3.38) for all i = 1, 2, . . . , N .

Further, let R be either R2 (in theH2 case) or R∞ (in theH∞ case), and con-
sider the matrices L(·),MCT (·), andMDT (·), as defined in (3.9). With the nota-
tion introduced above we can then write that

L(L2C̄cl,i,W ,P , γ) = (γ − trace(W ))⊕

[
W L2C̄cl,i

⋆ P

]

,

MCT (Ācl,i, B̄cl,iR,P ) =

[
−Sym(M i) N iR

⋆ I

]

,

MDT (Ācl,i, B̄cl,iR,P ) =





P M i N iR
⋆ P 0
⋆ ⋆ I



 .

With this it follows that equations (3.44)-(3.45) are equivalent to (3.39)-(3.40). �

3.5 Summary of the Approach

We next summarize the proposed approach to robust dynamic output-feedback
controller design.

Note, that γLB at each iteration represents an infeasible value for γ, while γUB

is a feasible one. At each iteration of the algorithm the distance between these
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Figure 3.2: Schematic representation of one joint of a space robotic manipulator.

two bounds is reduced in two. It should again be noted that if for a given γk

the optimal value for the cost function vγk
(xk,yk) is nonzero then the algorithm

assumes γk as infeasible. Since the algorithm converges to a local minimum it
may happen that the original BMI problem is actually feasible for this γk (e.g.
corresponding to the global optimum) but the local optimization is unable to
confirm feasibility – an effect that cannot be circumvented.

3.6 Illustrative Examples

3.6.1 Locally Optimal Robust Multiobjective Controller Design

The example considered consists of a linear model of one joint of a real-life space
robot manipulator (SRM) system, taken from Kanev and Verhaegen (2000b). A
schematic representation of the system is given in Figure 3.2. The equations of
motion of the SRM are as follows:

N2ImΩ̈ + Ison(Ω̈ + ǫ̈) + β(Ω̇ + ǫ̇) = T eff
j ,

Ison(Ω̈ + ǫ̈) + β(Ω̇ + ǫ̇) = Tdef .

The actuator model of the motor plus the gearbox is:

T eff
j = NTm, Tm = Ktic,

and the deformation torque Tdef is described as

Tdef = cǫ

Denote x = [Ω, Ω̇, ǫ, ǫ̇]T as the state, y =
[

Ω + ǫ, N Ω̇
]T

, as the measured out-

put, and u = ic as the input, then the state-space model of the system is given by
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Figure 3.3: Bode plot of the perturbed open-loop transfer from u to y2.
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Figure 3.4: Closed-loop system with the selected weighting function Wp(s).

ẋ(t) =







0 1 0 0
0 0 c

N2Im
0

0 0 0 1

0 − β

Ison
− c

N2Im
− c

Ison
− β

Ison







x(t) +







0
Kt

NIm

0
− Kt

NIm







u(t)

y(t) =

[
1 0 1 0
0 N 0 0

]

x(t) +

[
1
0

]

ξ(t)

z(t) =
[

1 0 1 0
]
x(t) + ξ(t)

(3.46)

The system parameters are given in Table 3.1.

The damping coefficient β and the spring constant c are considered as com-
ponent (parameter) faults in this example. A Bode plot of the open-loop system
for different values of β and c is given in Figure 3.3. The objective (see Figure
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Parameter: Symbol: Value:

gearbox ratio N -260.6

joint angle of inertial axis Ω variable

effective joint input torque T eff
j variable

motor torque constant Kt 0.6

the damping coefficient β [0.36, 0.44]
deformation torque of the gearbox Tdef variable

inertia of the input axis Im 0.0011

inertia of the output system Ison 400

joint angle of the output axis ǫ variable

motor current ic variable

spring constant c [1.17× 105, 1.43× 105]

Table 3.1: The values of the parameters in the linear model of one joint of the
SRM.

3.4) is to find a controller that achieves for all considered component faults a
disturbance rejection of at least 1:100 for constant disturbances on the shaft an-
gular position (Ω + ǫ) of the motor (such as, e.g., load), and a bandwidth of at
least 1 [rad/sec]. This can be achieved by selecting the following performance
weighting function (see the upper curve on Figure 3.5)

Wp(s) =
1

s + 0.01
,

and then requiring that

‖Wp(s)S(s)‖∞ < 1

holds for all considered component faults, where S(s) is the transfer function
from the disturbance d to the angular velocity y2 = N Ω̇. In other words, the de-
sign specifications would be achieved with a given controller K(s) if the closed-
loop transfer function from the disturbance d to the controlled output y2 lies
below the Bode magnitude plot of W−1

p (s).

It should be noted here that this problem is of a rather large scale: the BMI
optimization problem (3.20) consists of 4 bilinear matrix inequalities, each of
dimension 12 × 12, and each a function of 95 variables (40 for the controller
parameters, and 55 for the closed-loop Lyapunov matrix). Also note, that the
number of complicating variables, defined in Tuan and Apkarian (2000) as the
number min{dim(x),dim(y)}, in this example equals 40. This makes it clear that
the problem is far beyond the capabilities of the global approaches to solving the
underlying BMI problem, which can at present deal with no more than just a few
complicating variables.

First, using the result in Theorem 3.3 an initial controller was found achiev-
ing an upper bound of γ∞,init = 1.0866, which was subsequently used to ini-
tialize the newly proposed BMI optimization (see Algorithm 3.2). The tolerance
of TOL = 10−3 was selected. The new algorithm converged in 10 iterations to
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Figure 3.5: Sensitivity function of the closed-loop system for the nominal values
of the parameters and the inverse of the weighting function Wp.

γ∞,NEW = 0.6356. The computation took about 100 minutes on a PC with In-
tel(R) Pentium IV CPU 1500 MHz and 1 Gb RAM. Next, four other algorithms
were tested on this example with the same initial controller, the same tolerance
and the same stopping conditions. These algorithms were Rank Minimization
Approach (RMA) (Ibaraki and Tomizuka 2001), the Method of Centers (MC) (Goh
et al. 1994), the Path-Following Method (PATH) (Hassibi et al. 1999), and the Al-
ternating coordinate method (DK) (Iwasaki 1999). The results are summarized
in Table 3.2. From among these four approaches only two were able to improve
the initial controller, namely the MC which achieved γ∞,MC = 0.8114 in about
610 minutes, and the DK iteration that terminated in about 20 minutes with
γ∞,DK = 0.8296. The MC method was unable to improve the performance fur-
ther due to numerical problems. Similar problems were reported in (Fukuda and

method achieved γopt

NEW 0.6356
RMA -

MC 0.8114
PATH infeas.

DK 0.8296

Table 3.2: Performance achieved by the five local BMI approaches applied to the
model of SRM (3.46).
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Figure 3.6: Upper and lower bounds on γ during the BMI optimization.

Kojima 2001). The PATH converged to an infeasible solution due to the fact that
the initial condition is not “close enough” to the optimal one, so that the first
order approximation that is made at each iteration is not accurate. Finally, the
RMA method was also unable to find a feasible solution.

This experiment shows that after initializing all BMI approaches with the
same controller, the newly proposed method outperforms the other compared
methods by achieving the lowest value for the cost function. On the other hand,
the initial controller itself also achieves a value for the cost function that is rather
close to the optimal cost obtained by the DK and the MC methods, i.e. these
methods were not able to significantly improve the initial solution. This im-
plies that the initial controller design method could provide good initial point
for starting a local optimization. For the newly proposed method, the upper and
the lower bounds on γ at each iteration are plotted in Figure 3.6. Note that at
each iteration the upper bound represents a feasible value for γ, and the lower
bound- an infeasible one. Also plotted on the same figure are the values achieved
by the DK iteration and the MC methods.

The optimal controller obtained after the execution of the newly proposed
method has the form (3.15). With this optimal controller, the closed-loop sensi-
tivity function is depicted in Figure 3.5, together with the inverse of the selected
performance weighting function W−1

p (s). It can be seen from the figure that the
sensitivity function remains below W−1

p (s), implying that the desired robust per-
formance has been achieved.

The difficulties that some of the other local approaches experienced is mainly
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due to the large scale of the problem that causes numerical difficulties and very
slow convergence. In order to further analyze the compared approaches we
present a simpler example in the next subsection. This allows us to perform a
series of experiments and to compare both the convergence properties as well
as the computational speed of the methods.

3.6.2 A Comparison Between Some Local BMI Approaches

In this subsection a comparison is made between the five above-mentioned lo-
cal approaches to BMI optimization. These approaches will now be tested on
the following simple example, taken from Goh et al. (1994): minx,y Λ(x, y) with
Λ(x, y) = max{y − 2x, x − 2y, xy − 6}. The global minimum is −2 achieved at
(x, y) = (2, 2). This problem can be equivalently rewritten in the form (3.20) as
follows

min
x,y,γ

γ, subject to diag{y − 2x− γ, x− 2y − γ, xy − 6− γ} ≤ 0. (3.47)

Only the RMA method does not require an initial condition. All of the four
other methods require a feasible initial condition. To make the comparison as
fair as possible it is performed in the following way.

• 100 experiments were made. At each experiment a random pair (x, y) was
generated, with x and y in the interval [−3, 3], and the four algorithms
(without RMA) were initialized with the same initial condition.

• In order to guarantee that the initial condition is feasible, the parameter γ
was selected in each experiment as γ = 1.1Λ(x, y).

• The same stopping condition was used for all methods. The stopping con-
dition was selected as in Step 3 of Algorithm 3.2 with TOL = 10−3 and
kmax = 20.

• The time needed for convergence is also computed for each experiment.
The algorithms were programmed in Matlab and executed on a computer
with Pentium II processor running at 450 MHz.

The results from the comparison are given in Table 3.3. It becomes clear from
the Table 3.3 that the newly proposed method is the only one with 100 % conver-
gence to the global optimum. Its best competitor is the MC with 86 % global
convergence, which is however much slower. It should be pointed that the per-
formances of these local approaches can vary quite a lot from one application to
the other. Thus the results presented in Table 3.3 should not be misinterpreted,
but should be considered as representative for the example considered in this
subsection. The newly proposed approach is then to be viewed as an alternative
to the existing methods that might be useful for some applications. Figure 3.7
visualizes the performance of the five compared approaches starting from ini-
tial condition (x(0), y(0)) = (−0.5384, 2.3619). It can be seen how the DK iteration
method converges to a point that is optimal in the directions of x and y, but is
still not a local optimum (and is actually pretty far away from that). The RMA
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Figure 3.7: Performance of the five compared local BMI approaches.

method
convergence to

the global optimum
aver. comp. time [sec]

NEW 100 % 2.542
RMA∗ 0 % 32.630

MC 86 % 19.656
PATH 69 % 3.304

DK 16 % 0.612

Table 3.3: Comparison between five local approaches to BMI optimization. ∗The
RMA method does not require the initial condition, and as such was executed
only one time.

approach also did not manage to converge to the optimum, but still performed
better than the DK iteration. The other three approaches, namely NEW, PATH,
and MC, all converged to the optimum. However, the newly proposed approach
was the fastest one.

3.7 Conclusions

The passive FTC system design is an approach where a controller needs to be
designed that makes the closed-loop system insensitive to certain class of faults.
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This can be achieved by viewing the faults as uncertainty in the system and then
designing a robust controller that can guarantee some satisfactory performance
in the worst-case uncertainty (fault scenario). In this way sensor, actuator and
component faults are represented as parametric (structured) uncertainty, and
one single controller is used for all fault scenarios. This can be viewed as a trade-
off between performance and increased robustness to faults, which can be de-
sirable when initially no information about the fault is available. The FDD part
could in this way gain time to do a more accurate fault diagnosis, after which the
actual reconfiguration can take place.

To this end, a new approach was presented in this chapter to the design of
locally optimal robust dynamic output-feedback controllers for systems with
structured uncertainties was presented. The uncertainty is allowed to have a
very general structure and is only assumed to be such that the state-space ma-
trices of the system belong to a certain convex set. The approach is based on
BMI optimization that is guaranteed to converge to a locally optimal solution
provided that an initially feasible controller is given. This algorithm enjoys the
useful properties of computational efficiency and guaranteed convergence to a
local optimum. An algorithm for fast computation of an initially feasible con-
troller is also provided and is based on a two-step procedure, where at each step
an LMI optimization problem is solved – one to find the optimal state-feedback
gain and one to find the remaining state-space matrices of the output-feedback
controller. The design objectives considered are H2, H∞, and pole-placement
in LMI regions. The approach was tested on a model of one joint of a real-life
space robotic manipulator, for which a robust H∞ controller was designed. In
addition, the proposed approach was compared to several existing approaches
on a simpler BMI optimization and it became clear that it can act as a good al-
ternative for some applications.
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4
LPV Approach to Robust Active
FTC

In the passive approaches to FTC, considered in Chapters 2 and 3, the goal was
to design one robust controller that achieves satisfactory performance for a spe-
cific class of possible faults. These passive FTC methods do not require fault di-
agnosis; they trade performance for increased robustness with respect to faults.
In the next chapters we focus on active FTC methods which can improve the per-
formance that can be achieved by the passive FTC methods by means of using
estimates of the faults, provided by some FDD scheme. The main focus is on
developing robust methods to active FTC that deal with both model uncertainty
as well as uncertainty in the fault estimates (also called FDD uncertainty). Fur-
thermore, the size of the FDD uncertainty is allowed to vary with time, making
it possible to consider more uncertainty immediately after the occurrence of a
fault due to the initial lack of enough measurement data from the faulty system.
To this end it is assumed that an FDD scheme is present that provides the FTC
scheme with both fault estimates as well as the uncertainty intervals of these
estimates, as illustrated on Figure 4.1 on page 96.
The active FTC methods, considered in this chapter, are based on parameter-
varying controller design. Two methods are presented. First, in Section 4.2 we
propose a deterministic approach to active FTC design that can deal with multi-
plicative sensor and actuator faults. This method designs off-line a bank of LPV
controllers for specific fault scenarios. Then, based on the fault estimates, the
controller that achieves the best performance is switched on. This LPV controller
is subsequently scheduled by the size of the uncertainty in the fault estimate.
The second method, developed in Section 4.3, is based on the probabilistic
framework of Chapter 2. This probabilistic design method makes it possible to
consider, in addition to sensor and actuator faults, also component faults, as well
as to schedule the LPV by both the fault estimates and their uncertainty sizes.
In this way the bank of controllers from the deterministic method is replaced
by only one LPV controller. This second approach also considers (structured)
model uncertainty in addition to the FDD uncertainty. Both approaches can be
used for state-feedback as well as output-feedback design.

95
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Figure 4.1: The FDD scheme provides to the controller reconfiguration scheme

not only the estimates of the faults f̂ , but also the sizes γf of the uncertainties in
these estimates.

4.1 Introduction

As opposed to the passive FTC methods, presented in Chapters 2 and 3 of this
thesis, the active methods to FTC usually require the presence of an FDD scheme
that provides estimates of the faults. These fault estimates can then be used in
an active FTC approach in order to improve the performance that is achievable
by the passive methods. Additionally, active methods can deal with a wider class
of system faults. This chapter proposes two methods to active FTC based on
parameter-dependent controller design with the clear focus on dealing with im-
precise (uncertain) fault estimates provided by the FDD scheme. To this end, it is
assumed that on-line estimates of the faults are available, but that the real values
of the faults lie within some given intervals around their estimates. The length of
these intervals is considered time-varying. This makes it possible to model more
accurately a real-life FDD scheme, where after the occurrence of an abrupt fault
it can first only provide rough fault estimates with big uncertainty, that are later
on fine-tuned as more measurements become available from the system.

The first approach to FTC, proposed in Section 4.2 of this chapter, can deal
with multiplicative sensor and actuator faults. The approach consists of the
off-line design of a set of suitably selected parameter-dependent controllers, in
which the scheduling parameters are the sizes of the uncertainty intervals. After
a fault has been diagnosed, the controller that achieves the best performance for
the current total fault estimates is switched on. This controller is then scaled to
accommodate the partial faults that are currently in effect. The resulting LPV
controller is subsequently scheduled by the sizes of the uncertainties in the fault
estimates. Although a finite set of controllers are initially designed, the recon-
figuration scheme is not restricted to a finite set of anticipated faults, but deals
with an arbitrary combination of multiplicative sensor and actuator faults.

The second approach, proposed in Section 4.3, is developed in the proba-
bilistic framework from Chapter 2. This makes it possible to consider, in addition
to sensor and actuator faults, also component faults, as well as to schedule the
LPV by both the fault estimates and their uncertainty sizes. In this way the bank
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of controllers from the deterministic method of Section 4.2 is replaced by only
one LPV controller. This second approach also considers (structured) model un-
certainty in addition to the FDD uncertainty.

Some previous work on the use of linear parameter-varying control meth-
ods for active FTC design are Bennani et al. (1999); Ganguli et al. (2002); Shin
et al. (2002). The main contribution of the methods presented in this chapter is
that they consider time-varying FDD uncertainty. Additionally, the probabilistic
method is applicable to a much wider class of faults as the fault estimate signal
is allowed to enter the state-space matrices of the system in any way as long as
the matrices remain bounded.

This chapter is organized as follows. The next section begins with the de-
scription of the deterministic approach to LPV-based robust active FTC for sen-
sor and actuator faults. The second, probabilistic design approach for compo-
nent faults is subsequently presented in Section 4.3. In Section 4.4 some exam-
ples are provided to illustrate the developed methods. Finally, Section 4.5 con-
cludes the chapter.

4.2 Deterministic Method for Multiplicative Sensor

and Actuator Faults

This section considers the problem of controller reconfiguration (CR) in cases of
multiplicative sensor and actuator faults. It is assumed that on-line estimates of
the faults are provided by some fault detection and diagnosis scheme as shown
in Figure 4.1. In order to model uncertainty in the FDD process, the true faults
are further assumed to lie inside given uncertainty intervals around the esti-
mates. Additionally, the lengths of these intervals are allowed to be time-varying
and are also assumed provided by the FDD scheme. The approach is demon-
strated on the diesel engine actuator benchmark model of Section 2.6.

4.2.1 Problem Formulation

Consider the following discrete-time linear system

Snom :







xk+1 = Axk + Bξξk + Buuk

zk = Czxk + Dzξξk + Dzuuk

yk = Cyxk + Dyξξk,
(4.1)

where xk ∈ R
n is the state of the system, u ∈ R

m is the control action, y ∈ R
p

is the measured output, z ∈ R
nz represents the controlled output of the system,

and ξ ∈ R
ξ is the disturbance to the system.

In this section we consider multiplicative sensor and actuator faults, as mod-
elled in (1.6) on page 7. The offsets ū and ȳ in (1.6) will be considered equal to
zero in the sequel. When nonzero, their effect on the controlled output zk can
be minimized by including them in the disturbance signal ξk. Replacing uk and

yk in (4.1) with the faulty signals uf
k in (1.2) and yk in (1.4) on page 7, and sub-

sequent substitution ū = 0 and ȳ = 0, results in the following model describing
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multiplicative simultaneous sensor and actuator faults

SF :







xk+1 = Axk + Bξξk + BuΣAuk

zk = Czxk + Dzξξk + DzuΣAuk

yk = ΣSCyxk + ΣSDyξξk,
(4.2)

As discussed in the introductory chapter 1, it is assumed that ΣA ∈ ΣA and
ΣS ∈ ΣS , where

ΣA
.
=
{

ΣA = diag(σ1
a, . . . , σm

a ) : (A,BuΣA) is stabilizable
}

ΣS
.
=
{

ΣS = diag(σ1
s , . . . , σp

s ) : (A,ΣSCy) is detectable
}

.
(4.3)

In other words, only faults that do not affect the stabilizability and the detectabil-
ity of the system are considered.

Note that the quantities ΣA and ΣS are allowed to be time varying, and that
we require that the conditions ΣA ∈ ΣA and ΣS ∈ ΣS hold at each time instant
k. For simplicity of the notations, however, we will not explicitly write the time
dependence in ΣA and ΣS .

As already discussed, the focus of this section is the development of a con-
troller reconfiguration technique applicable to multiplicative sensor and actua-
tor faults. The detection and isolation of these faults is not the purpose of this
chapter, and it is assumed that a fault detection and isolation (FDD) scheme is
available and produces online both estimates of the faults Σ̂A, Σ̂S , as well as of
the uncertainty intervals around them ΓA and ΓA so that

ΣA ∈ Σ̂A(I + ΓA∆A), 0 ≤ ΓL
A ≤ ΓA ≤ ΓU

A

ΣS ∈ Σ̂S(I + ΓS∆S), 0 ≤ ΓL
S ≤ ΓS ≤ ΓU

S ,
(4.4)

where ∆A and ∆S are two real diagonal matrices with ‖∆A‖2 ≤ 1 and ‖∆S‖2 ≤ 1,
representing the uncertainty. The real diagonal matrices ΓA and ΓS , on the other
hand, are used to represent the size of the uncertainty intervals around the fault
estimates since it can be written that

Σ̂A(I − ΓA) ≤ ΣA ≤ Σ̂A(I + ΓA),

Σ̂S(I − ΓS) ≤ ΣS ≤ Σ̂S(I + ΓS).
(4.5)

We denote the matrices ΓA and ΓS and their bounds as

ΓA
.
= diag (γa,1, . . . , γa,m) ,

ΓS
.
= diag (γs,1, . . . , γs,p) ,

ΓL
A

.
= diag

(
γl

a,1, . . . , γ
l
a,m

)
,

ΓU
A

.
= diag

(
γu

a,1, . . . , γ
u
a,m

)
,

ΓL
S

.
= diag

(
γl

s,1, . . . , γ
l
s,p

)
,

ΓU
S

.
= diag

(
γu

s,1, . . . , γ
u
s,p

)
,

(4.6)

so that γa,i ∈ [γl
a,i, γu

a,i], and γs,j ∈ [γl
s,j , γu

s,j ], as implied from (4.4). In practice
it could be expected that ΓA and ΓS would be large immediately after the occur-
rence of a fault (i.e. they equal their upper bounds), and then gradually become
smaller as more data becomes available from the system.
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Interconnected to the fault-free system Snom is the full order fault-free con-
troller

Knom :

{
xc

k+1 = Anom
c xc

k + Bnom
c yk

uk = Cnom
c xc

k + Dnom
c yk,

(4.7)

resulting in the fault-free closed-loop system Tcl = FL(Snom,Knom), whereFL(·, ·)
is used to denote the lower linear fractional transformation (Zhou and Doyle
1998). The control objective considered is the minimization of the H∞-norm
of the closed-loop system Tcl, i.e.

min
Knom

‖FL(Snom,Knom)‖∞. (4.8)

When a given combination of sensor and actuator faults occurs in the system,
the model of the faulty system SF becomes uncertain, as is clear after combin-
ing equations (4.2) and (4.4). If the uncertainty intervals were constant in time
(or, equivalently, if in (4.4) we take ΓL

A = ΓU
A and ΓL

S = ΓU
S ), then for any fixed

matrices Σ̂A ∈ ΣA and Σ̂S ∈ ΣS the controller reconfiguration problem could
be defined as

min
K

sup
∆A,∆S

‖FL(SF ,K)‖∞.

However, in the more general case when ΓL
A < ΓU

A and ΓL
S < ΓU

S , the controller
could be made dependent on ΓA and ΓS . To this end, the problem is formu-
lated as follows: given any fixed Σ̂A ∈ ΣA and Σ̂S ∈ ΣS , design a parameter-
dependent controllerK(ΓA,ΓS), that achieves

min
K(ΓA,ΓS)

sup
∆A, ∆S
ΓA, ΓS

‖FL(SF (ΓA,ΓS),K(ΓA,ΓS))‖∞. (4.9)

Note that in the deterministic approach presented in section 4.2, as opposed to
the probabilistic approach in section 4.3, the controller is not directly scheduled
by the the fault estimates Σ̂A and Σ̂S . The reason for that is that if we make the
controller dependent on Σ̂A and Σ̂S this results in an infinite number of LMIs
that need to be solved to compute the controller. This is due to the fact that the
LMIs that we will derive in the sequel are affine in the fault estimates Σ̂A and Σ̂S

(for fixed ΓA and ΓS) and in the uncertainty intervals ΓA and ΓS (for fixed Σ̂A

and Σ̂S), but are not affine in all Σ̂A, Σ̂S , ΓA and ΓS at the same time. There-
fore, the well-known vertex LMI property cannot be applied here to equivalently
represent the infinite number of LMIs by a finite number of vertex LMIs.

To circumvent this problem we impose the restriction that the controller is
scheduled only by the uncertainty intervals ΓA and ΓS . In order to be able to
deal with the fault estimates Σ̂A and Σ̂S in this Section 4.2 we proceed as follows
(see Figure 4.2). First, a well-chosen set of parameter dependent local controllers
is designed off-line by solving the problem (4.9) for some given pairs Σ̂A ∈ ΣA

and Σ̂S ∈ ΣS . Then, after each occurrence of a combination of sensor and ac-
tuator faults the controller is reconfigured by means of input/output scaling of
one of the pre-designed controllers. This reconfigured controller is subsequently
scheduled by current values for ΓA and ΓS . The question of how to select the Σ̂A’s
and Σ̂S ’s for which to design the set of local LPV controllers will be considered in
the next subsection.



100 Chapter 4 LPV Approach to Robust Active FTC

S

FDI

z

yu

x

nom

SF

S SSA

Reconfiguration
Mechnism

R
(GA S, )G

S
et

 o
f

lo
ca

l
co

n
tr

o
lle

rs
SA SS

^ ^
GA GS,,

K

Figure 4.2: Block-schematic representation of the reconfiguration of the overall
fault-tolerant system.

4.2.2 LPV Controllers Design

In this subsection we concentrate on the design of a LPV controller for certain
fixed and given Σ̂A ∈ ΣA and Σ̂S ∈ ΣS by solving the problem (4.9). The result-
ing LPV controller will be scheduled by the uncertainty sizes ΓA and ΓS . In the
next subsection we will discuss on how to select the Σ̂A’s and Σ̂S ’s for which we
need to design the set of local LPV controllers.

Consider the faulty system (4.2) interconnected with the parameter depen-
dent controller

K(ΓA,ΓS) :

{
xc

k+1 = Ac(ΓA,ΓS)xc
k + Bc(ΓA,ΓS)yk

uk = Cc(ΓA,ΓS)xc
k + Dc(ΓA,ΓS)yk,

(4.10)

where xc
k ∈ R

n. Further, observing the equivalence between the two block-
schemes on Figure 4.3, it becomes clear that the faulty system SF can be written
in the form

M :















xk+1

za,k

zs,k

zk

yk









=





A B1 B2

C1 D11 D12

C2 D21 0













xk

wa,k

ws,k

ξk

uk









wa,k = ∆Aza,k,
ws,k = ∆Szs,k

(4.11)
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Figure 4.3: Pulling out the uncertainties.

where it is denoted

B1(ΓA)
.
=
[

BuΣ̂AΓA 0 Bξ

]
, B2

.
= BuΣ̂A,

C1(ΓS)
.
=





0

ΓSΣ̂SCy

Cz



 , C2
.
= Σ̂SCy,

D11(ΓA,ΓS)
.
=





0 0 0

0 0 ΓSΣ̂SDyξ

DzuΣ̂AΓA 0 Dzξ



 ,

D12
.
=





I
0

DzuΣ̂A



 , D21
.
=
[

0 I Σ̂SDyξ

]
.

Note, that the matrices B2, C2, D12 and D21 are independent on the variables ΓA

and ΓS , an important fact that would be exploited in what will follow. Note also,
that the matrices B1, C1, and D11 are affine in ΓA and ΓS .

In this way, the uncertainty in the system was “pulled out”, that resulted in an
augmented modelM that depends on the known variables ΓA and ΓS , so that

SF (∆A,∆S) = FU

(

M,

[
∆A

∆S

])

Here FU (·, ·) denotes the upper linear fractional transformation. Therefore, the
faulty closed-loop system can be rewritten as

FL(SF (ΓA,ΓS),K(ΓA,ΓS)) =

FL

(

FU

(

M,

[
∆A

∆S

])

,K(ΓA,ΓS)

)

.

Using the small gain theorem it then follows that for any given γ > 0

sup
∆A,∆S

‖FL(SF (ΓA,ΓS),K(ΓA,ΓS))‖∞ ≤ γ−1
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if

‖FL (Mγ ,K(ΓA,ΓS)) ‖∞ ≤ 1, (4.12)

where Mγ is obtained by multiplying the output zk of the system M by γ, as
demonstrated on Figure 4.4. We note here that by making use of the small gain
theorem we “destroy” the block-diagonal structure of the uncertainty. What we
gain is a convex LMI problem that can be solved very efficiently. The prise that
we have to pay for this convexity is conservatism in the resulting controller.

Thus, the problem defined in (4.9) is reduced to maximization of γ under
the constraint (4.12). In this way it is enough to consider the case of γ = 1, i.e.
Mγ =M in (4.12), and then a simple bisection type of algorithm can be used to
solve the problem of minimizing γ−1 subject to the constraint (4.12). Before we
proceed with a result that can be used to find a parameter dependent controller
K(ΓA,ΓS) such that (4.12) holds for γ = 1 we define the matrices Bi

1, Cj
1 , and

Dl
11, i = 0, 1, . . . , (p + m), such that

B1(ΓA) = B0
1 +

m∑

i=1

Bi
1γa,i,

C1(ΓS) = C0
1 +

p
∑

j=1

Cj
1γs,j

D11(ΓA,ΓS) = D0
11 +

m∑

i=1

Di
11γa,i +

p
∑

j=1

Dm+j
11 γs,j

(4.13)

The LPV controller design is next considered for the state-feedback and output-
feedback cases.

State-feedback case

In the state-feedback case the state xk is assumed given and the measurement yk

in (4.1) is no longer considered. Sensor faults, which are faults in the measure-
ments yk, have therefore also no effect on the optimal state-feedback design. In
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this case the controller takes the form

KSF (ΓA) : uk = F (ΓA)xk,

and the faulty system SF can be written in the form

Msf :











xk+1

za,k

zk



 =

[
A B̄1 B2

C̄1 D̄11 D̄12

]







xk

wa,k

ξk

uk







wa,k = ∆Aza,k,

(4.14)

where
B̄1(ΓA)

.
=
[

BuΣ̂AΓA Bξ

]
, B̄2

.
= BuΣ̂A,

C̄1
.
=

[
0

Cz

]

, D̄11(ΓA)
.
=

[
0 0

DzuΣ̂AΓA Dzξ

]

,

D̄12
.
=

[
I

DzuΣ̂A

]

.

Then, similarly to (4.13), we define

B̄1(ΓA) = B̄0
1 +

m∑

i=1

B̄i
1γa,i,

D̄11(ΓA) = D̄0
11 +

m∑

i=1

D̄i
11γa,i

(4.15)

The following result can then be used for the design of the state-feedback gain
F (ΓA).

Lemma 4.1 Consider the systemM in Equation (4.14) with the matrix ΓA being
bounded as in (4.4). Let the matrices X = XT ∈ R

n×n and Li ∈ R
m×n, i =

0, 1, . . . ,m be such that the for all γa,i ∈ {γl
a,i; γ

u
a,i} the following linear matrix

inequalities are feasible







X A + B2L B̄1(ΓA) 0
⋆ X 0 LT DT

12 + XC1

⋆ ⋆ I D11(ΓA)T

⋆ ⋆ ⋆ I







> 0, (4.16)

where

L
.
= L0 +

m∑

i=1

Liγa,i. (4.17)

Then the parameter-dependent state-feedback matrix

F (ΓA) = F0 +
m∑

i=1

Fiγa,i (4.18)
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with Fi = LiX
−1, i = 0, 1, . . . ,m, results in the closed-loop system

Tcl :







xcl,k+1 = Āclxcl,k + B̄cl

[
ωa,k

ξk

]

[
za,k

zk

]

= C̄clxcl,k + D̄cl

[
ωa,k

ξk

] (4.19)

with
Ācl = A + B2F (ΓA), B̄cl = B̄1(ΓA),
C̄cl = C̄1 + D̄12F (ΓA), D̄cl = D̄11(ΓA),

(4.20)

for which ‖Tcl‖∞ ≤ 1.

Proof: Consider the closed-loop system (4.20). Then ‖Tcl‖∞ ≤ 1 will hold for
all γa,i ∈ {γl

a,i; γ
u
a,i} if the following matrix inequalities holds (consult Lemma 3.3

on page 73)






Y YĀcl XB̄cl 0
⋆ Y 0 C̄T

cl

⋆ ⋆ I D̄T
cl

⋆ ⋆ ⋆ I







> 0, (4.21)

is feasible for some matrix Y = YT or, equivalently, is there exists a symmetric
matrix X such that







X ĀclX XB̄cl 0
⋆ X 0 XC̄T

cl

⋆ ⋆ I D̄T
cl

⋆ ⋆ ⋆ I







> 0, (4.22)

holds for all γa,i ∈ {γl
a,i; γ

u
a,i}. After substitution of the closed-loop system matri-

ces in (4.20), and subsequently performing the one-to-one change of variables
L = FX results in the system of matrix inequalities (4.16). Therefore, taking
L as in equation (4.17) results in state-feedback gain F = LX−1, defined in
(4.18), so that for the closed-loop system it will hold that ‖Tcl‖∞ ≤ 1 for all
γa,i ∈ {γl

a,i; γ
u
a,i}. �

Output-feedback case

In the output-feedback case the following result can be used for the LPV con-
troller design.

Theorem 4.1 Consider the systemM in Equation (4.11) with the matrices ΓA and
ΓS being bounded as in (4.4). Let the matrices X = XT ∈ R

n×n, Y = YT ∈ R
n×n,

Ki ∈ R
n×n, Li ∈ R

n×p, Mi ∈ R
m×n, Ni ∈ R

m×p, i = 0, 1, . . . , (m + p) be such that
the for all γa,i ∈ {γl

a,i; γ
u
a,i}, and γs,j ∈ {γl

s,j ; γ
u
s,j} the linear matrix inequalities







Y A B 0
⋆ Y 0 C

⋆ ⋆ I D

⋆ ⋆ ⋆ I







> 0 (4.23)
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hold, where it is denoted

Y =

[
Y I
⋆ X

]

, A =

[
AY + B2M A + B2NC2

K XA + LC2

]

,

B =

[
B1(ΓA) + B2ND21

XB1(ΓA) + LD12

]

, C =

[
(C1(ΓS)Y + D12M)T

(C1(ΓS) + D12NC2)
T

]

,

D = (D11(ΓA,ΓS) + D12ND21)
T ,

[
K L
M N

]

=

[
K0 L0

M0 N0

]

+

m∑

i=1

γa,i

[
Ki Li

Mi Ni

]

+

p
∑

j=1

γs,m+j

[
Km+j Lm+j

Mm+j Nm+j

]

(4.24)

Then for any nonsingular matrices U and V, such that UVT = I − XY, a con-
trollerK(ΓA,ΓS) that achieves ‖FL (M,K(ΓA,ΓS)) ‖∞ ≤ 1 is parametrized by

[
Ac Bc

Cc Dc

]

=

[
U XB2

0 I

]−1 [
K−XAY L

M N

] [
VT 0
C2Y I

]−1

(4.25)

Proof: Consider the interconnection of the systemM (4.11) with the controller
(4.10) that results in closed-loop system Tcl = FL (M,K(ΓA,ΓS)) with state-
space matrices

Acl =

[
A + B2DcC2 B2Cc

BcC2 Ac

]

, Bcl =

[
B1(ΓA) + B2DcD21

BcD21

]

Ccl =
[

C1(ΓS) + D12DcC2 D12Cc

]

Dcl = D11(ΓA,ΓS) + D12DcD21

Then it is a fact (see Lemma 3.3 on page 73) that ‖Tcl‖∞ ≤ 1 will hold for all ΓA

and ΓS if there exists a matrix X = X
T and controller matrices (Ac, Bc, Cc,Dc)

such that 





X XAcl XBcl 0
⋆ X 0 C

T
cl

⋆ ⋆ I D
T
cl

⋆ ⋆ ⋆ I







> 0. (4.26)

Note that the above inequality implies X > 0, and that it is nonlinear in the
unknowns. In order to linearize it we will perform a certain one-to-one change
of variables. To this end denote

X =

[
X U
UT X̄

]

, X
−1 =

[
Y V
VT •

]

, Y =

[
Y I
VT 0

]

,

so that from XX
−1 = I it follows that

XY + UVT = I
YU + VX̄ = 0.
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Above, • denote entries that will be of no importance in the sequel. Next, note
that

Y
T

X =

[
YX + VUT YU + VT X̄

X U

]

=

[
I 0
X U

]

,

Y
T

XY =

[
Y I

XY + UVT X

]

=

[
Y I
I X

]

.

are affine in X, Y, and U. Multiplication of the first two (block) rows in (4.26) by
Y

T , and the first two columns by Y results in the equivalent inequality







Y
T

XY Y
T

XAclY Y
T

XBcl 0
⋆ Y

T
XY 0 Y

T
Ccl

⋆ ⋆ I Dcl

⋆ ⋆ ⋆ I







> 0,

in which the matrices of interest can be written as

[
Y

T
XAclY Y

T
XBcl

Y
T

Ccl Dcl

]

=





AY A B1(ΓA)
0 XA XB1(ΓS)

C1(ΓS)Y C1(ΓS) D11(ΓA,ΓS)



+





0 B2

I 0
0 D12





[
K L
M N

] [
I 0 0
0 C2 D12

]

where the linearizing change of variables was introduced

[
K L
M N

]

=

[
U XB2

0 I

] [
Ac Bc

Cc Dc

] [
VT 0
C2Y I

]

+

[
XAY 0

0 0

]

This one-to-one reparametrization is used to convexify the problem, i.e. it allows
us to solve a convex LMI optimization problem in the new variables K,L,M,N,
and subsequently compute the controller matrices uniquely using the inverse
transformation.

Note that equation (4.25) follows from here. Due to the fact that the closed-
loop matrices are affine in the elements of ΓA and ΓS , the matrix inequality will
hold for all γa,i ∈ [γl

a,i, γu
a,i], and γs,j ∈ [γl

s,j , γu
s,j ], if it holds at the vertexes of the

intervals γa,i ∈ {γl
a,i; γ

u
a,i}, and γs,j ∈ {γl

s,j , γu
s,j}. By observing that the matrices

B2, C2, and D12 are independent on ΓA and ΓS it becomes clear, that taking the
matrices K, L, M, and N as in (4.24) results in (4.23). �

Dealing with parametric uncertainty

Parametric uncertainty in the system matrices can also be considered and the
same results, derived above for the state-feedback and output-feedback cases,
can be used for LPV controller design. However, it should be pointed out that
the structure of the parametric uncertainty is lost when one applies the results
above due to the fact that they both make use of the small gain theorem.
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To show how parametric uncertainty can be dealt with, consider the follow-
ing fault-free uncertain system

S(p) :







xk+1 = A(p)xk + Bξ(p)ξk + Bu(p)uk

zk = Cz(p)xk +Dzξ(p)ξk +Dzu(p)uk

yk = Cy(p)xk +Dyξ(p)ξk,
(4.27)

where the parameter vector p = [p1, p2, . . . , pN ]T , with pi ∈ [−1, 1] and




A(p) Bξ(p) Bu(p)
Cz(p) Dzξ(p) Dzu(p)
Cy(p) Dyξ(p) 0




.
=





A0 B0
ξ B0

u

C0z D0
zξ D0

zu

C0y D0
yξ 0



+

N∑

i=1

pi





Ai Bi
ξ Bi

u

Ci
z Di

zξ Di
zu

Ci
y Di

yξ 0



 .

The idea is to pull the uncertain parameters pi out of the system like we did above
with the FDD uncertainties ΓA and ΓS . To this end let

ri = rank





Ai Bi
ξ Bi

u

Ci
z Di

zξ Di
zu

Ci
y Di

yξ 0



 ,

and define (for instance, by using the singular value decomposition) for i =
1, 2, . . . , N the matrices





Ei

F z
i

F y
i




[

Gi Hξ
i Fu

i

] .
=





Ai Bi
ξ Bi

u

Ci
z Di

zξ Di
zu

Ci
y Di

yξ 0



 ,

where
Ei ∈ R

n×ri , Gi ∈ R
ri×n,

F z
i ∈ R

nz×ri , Hξ
i ∈ R

ri×nξ ,
F y

i ∈ R
p×ri , Hu

i ∈ R
ri×m.

It can then easily be verified that the system

Sunc :







xk+1 = Axk + Bξ ξ̄k + Buuk

z̄k = Czxk + Dzξ ξ̄k + Dzuuk

yk = Cyxk + Dyξ ξ̄k

ξ̄k = diag{p1Ir1
, . . . , pNIrN

, Inz
}z̄k

(4.28)

with matrices

A
.
= A0 Bξ

.
=
[

E1 . . . EN B0
ξ

]
Bu

.
= B0

u

Cz
.
=








G1

...
GN

C0z








Dzξ
.
=








0 . . . 0 Hξ
1

...
. . .

...
...

0 . . . 0 Hξ
N

F z
1 . . . F z

N D0
zξ








Dzu
.
=








Hu
1

...
Hu

N

D0
zu








Cy
.
= C0y Dyξ

.
=
[

F y
1 . . . F y

N D0
yξ

]

is equivalent to the system (4.27). Therefore, by substituting the system (4.1) with
(4.28) we can make use of the same approach to the design of the state-feedback
and the output-feedback LPV controllers, presented above.
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4.2.3 Controller Reconfiguration Strategy

Next, we consider the problem of controller reconfiguration. As already dis-
cussed, the approach is based on a predesigned set SK of parameter dependent
controllers. Each controller is designed for a given faulty model by making use
of the results in the previous section. The reconfigured controller is then taken
as a scaled version of an appropriately selected parameter dependent controller
from the set SK.

Define the following two sets of total faults

Σt
A

.
= {ΣA ∈ ΣA : ΣA = Σ†

A} ⊂ ΣA

Σt
S

.
= {ΣS ∈ ΣS : ΣS = Σ†

S} ⊂ ΣS ,
(4.29)

where the notation A† denotes the pseudo-inverse of A, i.e. if the singular value
decomposition of A is Udiag (λ1, . . . , λr, 0, . . . , 0) V T , then

A† = Udiag
(
λ−1

1 , . . . , λ−1
r , 0, . . . , 0

)
V T .

The set Σt
A (Σt

S) represents all possible combinations of total actuator (sensor)
faults that do not affect the stabilizability (detectability) of the system.

Let us suppose that a set of N controllers, each dependent on the time-varying
parameters ΓA and ΓS , has been designed

SK = {K1(ΓA,ΓS),K2(ΓA,ΓS), . . . ,KN (ΓA,ΓS)}, (4.30)

where the i-th controller is designed for the faulty system (4.2)-(4.4) for some
given Σ̂i

A ∈ Σt
A and Σ̂i

S ∈ Σt
S , by making use of the results in Section 4.2.2. In

order to be able to deal with any possible combination of sensor and actuator
faults, the matrices (Σ̂i

A, Σ̂i
S), need to be selected such that

1. Σ̂i
A 6= 0, Σ̂i

S 6= 0, for all i = 1, 2, . . . , N , and

2. for any Σ̃A ∈ Σt
A and Σ̃S ∈ Σt

S there exists an index i for which

Σ̃AΣ̂i
A = Σ̂i

A, and

Σ̃SΣ̂i
S = Σ̂i

S .
(4.31)

In other words, for any pair of total faults (Σ̃A, Σ̃S) ∈ Σt
A ×Σt

S there should
be at least one controller Ki(·, ·) that does not use the totally failed sensors and
actuators described by the diagonal elements of the matrices (Σ̃A, Σ̃S). This is
illustrated in the following example.

Example 4.1 Consider only actuator faults, and let the system have three actu-
ators. Suppose also that the system is controllable by each individual actuator.
Then the set of admissible actuator faults is given by (see equation (4.3) on page 98)

ΣA =











α1

α2

α3



 :

3∑

i=1

|αi| 6= 0






.
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In other words only the case when all three actuators are totally failed does not
belong to ΣA since this is the only case when the system is not stabilizable. There-
fore, the set of total actuator faults Σt

A, defined in (4.29), in this example takes the
form

Σt
A =











α1

α2

α3



 : αi ∈ {0; 1},
3∑

i=1

αi 6= 0






.

In this case the minimum number of controllers in the bank SK is three and cor-
responds to the following actuator fault patterns

Σ̂1
A =





1
0

0



 , Σ̂2
A =





0
1

0



 , Σ̂3
A =





0
0

1



 .

Indeed, now for any total actuator fault Σ̃A from the set Σt
A, there exists at least

one Σ̂i
A for which (4.31) holds. For instance, if Σ̃A = diag{[1, 0, 1]}, then both Σ̂1

A

and Σ̂3
A are such that Σ̃AΣ̂1

A = Σ̂1
A and Σ̃AΣ̂3

A = Σ̂3
A, so that either controllerK1 or

K3 can be used (none of them uses the totally failed second actuator). The idea ex-
ploited below is then to select the controller that can achieve a better performance
for the closed-loop system.

We note here that in addition to the three Σ̂i
A’s, defined above, one may also

include four additional: three corresponding to the three individual total actuator
faults, and one for the fault-free case. This would further improve the achievable
performance for a particular combination of total faults.

Further than that there is no restriction on how to select the controllers. It
should be noted, that if the control system S is stabilizable by each single input,
and is detectable from each single output, then the minimal number of con-
trollers that will be needed is (mp), i.e. there should be one controller for each
input-output channel.

Thus, the i-th controllerKi(ΓA,ΓS) is such that

sup
∆A, ∆S
ΓA, ΓS

‖FL(SF (Σ̂i
A, Σ̂i

S ,ΓA,ΓS),Ki(ΓA,ΓS))‖∞ ≤
1

γi

for some γi > 0.
Now that the set of controllers has been defined, we are ready to present the

reconfiguration scheme. Consider the system (4.2), and suppose that a combi-
nation of sensor and actuator faults has occurred in the system, represented by
the diagonal matrices ΣA and ΣS as in (4.4). Consider also the set of local con-
trollers (4.30). Define the matrices

Σ̂t
A = Σ̂AΣ̂†

A, and

Σ̂t
S = Σ̂SΣ̂†

S ,

which carry information about the total faults only. Let Σ̂p
A and Σ̂p

S are any non-
singular matrices of appropriate dimensions such that

Σ̂A = Σ̂p
AΣ̂t

A, and

Σ̂S = Σ̂p
SΣ̂t

S .
(4.32)



110 Chapter 4 LPV Approach to Robust Active FTC

In this way we have actually split the faults into total and partial.
Let

iopt ∈
{

arg max
i
{γi : Σ̂t

AΣ̂i
A = Σ̂i

A, Σ̂t
SΣ̂i

S = Σ̂i
S , }
}

.

Then the controller

KR(ΓA,ΓS) =
(

Σ̂p
S

)−1

Kiopt
(ΓA,ΓS)

(

Σ̂p
A

)−1

(4.33)

achieves

sup
∆A, ∆S
ΓA, ΓS

∥
∥
∥FL

(

SF (Σ̂A, Σ̂S ,ΓA,ΓS),KR(ΓA,ΓS)
)∥
∥
∥
∞
≤

1

γiopt

This becomes clear by observing that for any i = 1, 2, . . . , N

FL

(

SF (Σ̂A, Σ̂A,ΓA,ΓS), (Σ̂p
S)−1Ki(ΓA,ΓS)(Σ̂p

A)−1
)

= FL

(

SF (Σ̂t
A, Σ̂t

S ,ΓA,ΓS),Ki(ΓA,ΓS)
)

Since the i-th controller is designed for total faults represented by the matrices
(Σ̂i

A, Σ̂i
S) we can write that

Ki(ΓA,ΓS) = Σ̂i
AKi(ΓA,ΓS)Σ̂i

S ,

and thus

FL

(

SF (Σ̂t
A, Σ̂t

S ,ΓA,ΓS),Ki(ΓA,ΓS)
)

= FL

(

SF (Σ̂t
AΣ̂i

A, Σ̂i
SΣ̂t

S ,ΓA,ΓS),Ki(ΓA,ΓS)
)

so that for any i, for which Σ̂t
AΣ̂i

A = Σ̂i
A and Σ̂t

SΣ̂i
S = Σ̂i

S hold, the controller
Ki(ΓA,ΓS) is such that

sup
∆A, ∆S
ΓA, ΓS

∥
∥
∥FL

(

SF (Σ̂i
A, Σ̂i

S ,ΓA,ΓS),KR(ΓA,ΓS)
)∥
∥
∥
∞
≤

1

γi
.

is satisfied.
Of course, after the controllerKR(ΓA,ΓS) has been switched on, if the perfor-

mance, measured by the number 1/γiopt
is not satisfactory, then one may wish to

solve the optimization problem in Section 4.2.2 on-line. While this may be time
consuming, the computational time is no longer of critical importance.

This deterministic method will be illustrated on a case study in Section 4.4.
In the next section we present the probabilistic design approach to LPV-based
robust active FTC, that can deal with component faults in addition to sensor and
actuator faults.

4.3 Probabilistic Method for Component Faults

In this second section of this chapter we develop a scheme that implements a
robust active FTC design applicable to systems with sensor, actuator and com-
ponent faults in the presence of model uncertainty. The estimates of the faults
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in the system, obtained from the FDD scheme, are considered imprecise (un-
certain). These estimates are here again assumed to lie inside some uncertainty
intervals, the sizes of which are assumed given. The parameter-varying robust
active FTC that is derived, however, is scheduled not only by the sizes of the un-
certainty intervals γf (see Figure 4.1) as in the previous section, but also by the

fault estimates f̂ . this is made possible by making use of the probabilistic frame-
work from Chapter 2. It is this probabilistic design method that also allows us
here to consider a much wider class of faults as well as structured model uncer-
tainties.

4.3.1 Problem Formulation

Below we consider the nominal systemSnom defined in (4.1) on page 97, in which
sensor, actuator and/or component faults can occur. The faulty system descrip-
tion is assumed in the form

SF :







xk+1 = A∆(f)xk + B∆
ξ (f)ξk + B∆

u (f)uk

zk = C∆
z (f)xk + D∆

zξ(f)ξk + D∆
zu(f)uk

yk = C∆
y (f)xk + D∆

yξ(f)ξk + D∆
yu(f)uk,

(4.34)

where xk ∈ R
n is the state of the system, u ∈ R

m is the control action, y ∈ R
p

is the measured output, z ∈ R
nz represents the controlled output of the system,

and ξ ∈ R
ξ is the disturbance to the system. The vector f(k) ∈ F ⊂ Rnf rep-

resents faults in the system. Note that this general representation could be used
to model a wide class of sensor, actuator and component faults. ∆ represents
the uncertainty in the system, which is assumed as in Chapter 2 to belong to
some bounded set ∆ with a given probability density function f∆(∆) inside ∆.
In addition to that, since the probabilistic framework is used in this section, it is
assumed that random uncertainty samples can be generated with the specified
probability density function f∆(∆). Furthermore, ∆ is assumed to be such that

∥
∥
∥
∥
∥
∥





A∆(f) B∆
ξ (f) B∆

u (f)

C∆
z (f) D∆

zξ(f) D∆
zu(f)

C∆
y (f) D∆

yξ(f) D∆
yu(f)





∥
∥
∥
∥
∥
∥

2

<∞, ∀∆ ∈∆, f ∈ F .

As discussed above, the estimates f̂(k) are assumed to be imprecise, so that
the i-th entry of f is represented as

fi(k) = (1 + γf,i(k)∆̂i)f̂i(k), i = 1, 2, . . . , nf , (4.35)

where |∆̂i| ≤ 1 represents the FDD uncertainty, and where γf,i(k) defines the size

of the uncertainty in the sense that (4.35) is equivalent to fi(k) = (1+∆̄i(k))f̂i(k)
with |∆̄i(k)| ≤ γf,i(k). We will however make use of the FDD uncertainty repre-

sentation in equation (4.35) where the uncertainty ∆̂i is normalized since we will

later on design a controller scheduled by both the fault estimates f̂(k) and the
uncertainty sizes γf,i(k). The uncertainty sizes γf,i are allowed to be time vary-
ing, they are provided by the FDD scheme together with the fault estimates (see
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Figure 4.1 on page 96). In addition, we will denote the set in which the matrix ∆̂,
representing the FDD uncertainty, can take values as

∆̂
.
=
{

∆̂ = diag(∆̂1, . . . , ∆̂nf
) : |∆̂i| ≤ 1, i = 1, 2, . . . , nf

}

.

Both the fault estimates f̂(k) and the uncertainty sizes γf (k) are assumed to
belong to some known interval sets,

γf (k) ∈ Ωγ = {w ∈ R
nf : γf,min ≤ w ≤ γf,max}

f̂(k) ∈ Ωf = {w ∈ R
nf : fmin ≤ w ≤ fmax}.

In this subsection the control objective is specified as an LPV design prob-
lem, where the goal is to design a controller that can be scheduled by the fault

estimates f̂i and the FDD uncertainty sizes γf,i, i.e. an LPV controller of the form

K = K(f̂ , γf ).
For a reason that will become clear shortly we split the controlled output vec-

tor z into two vectors

z(k) =

[
z1(k)
z2(k)

]
} nz1

} nz2
, with nz = nz1 + nz2. (4.36)

For some given bounded functions gi(f̂ , γf ) : Ωf × Ωγ 7→ R we consider the
following parametrization of the LPV controller:

K(f̂ , γf ) = K0 +

nf∑

i=1

gi(f̂ , γf )Ki, (4.37)

where

K(f̂ , γf ) =

[
Ac(f̂ , γf ) Bc(f̂ , γf )

F (f̂ , γf ) 0

]

, Ki =

[
Ac

i Bc
i

Fi 0

]

, i = 0, 1, . . . , nf , (4.38)

with Ac ∈ R
n×n, Bc ∈ R

n×p, and F ∈ R
m×n. Thus, only strictly proper full-order

controllers are considered.
Let T∆

ξ 7→z1
(f) and T∆

ξ 7→z2
(f) denote the closed-loop system from the distur-

bance signal ξ(k) to z1(k) and z2(k), respectively. Note that, in view of (4.35),

these operators depend on f̂ and γf . The problem considered in this paper is
formulated as follows (see Figure 4.5): find an LPV controller (4.37) by solving
the problem

min
F (f̂ ,γf )

sup
∆ ∈ ∆, ∆̂ ∈ ∆̂

f̂ ∈ Ωf , γf ∈ Ωγ

‖T∆
ξ 7→z1

(f̂ , γf )‖∞

subject to sup
∆ ∈ ∆, ∆̂ ∈ ∆̂

f̂ ∈ Ωf , γf ∈ Ωγ

‖T∆
ξ 7→z2

(f̂ , γf )‖∞ ≤ 1
(4.39)

We note here that in the optimization (4.39) instead of the H∞-norm one may
prefer to use the H2-norm. One would then need to follow the same lines of
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Figure 4.5: Design objective specification.

reasoning as below to derive the correspondingH2 controller. In this Section 4.3
we focus on theH∞-norm.

The term that is optimized in (4.39) defines the performance index, i.e. the
cost function, while the second term can be used to handle input constraints. If
this is not desired and all controlled outputs z(k) need to be included into the
cost function, one should simply choose nz2 = 0, so that z1 ≡ z.

For convenience we write the optimization problem (4.39) in the following
form

min
F (f̂ ,γf )

γ

subject to sup
∆ ∈ ∆, ∆̂ ∈ ∆̂

f̂ ∈ Ωf , γf ∈ Ωγ

∥
∥
∥
∥
∥

[

γ−1T∆
ξ 7→z1

(f̂ , γf )

T∆
ξ 7→z2

(f̂ , γf )

]∥
∥
∥
∥
∥
∞

≤ 1 (4.40)

Two main difficulties arise when one tries to solve problem (4.40). The first
difficulty in solving the problem (4.40) lies in the fact that the function is not con-

vex in the parameters f̂ and γf since both the system and the controller depend
on them. For this reason the standard LMI techniques cannot be used to solve
the problem. For that reason the approach for probabilistic design of Chapter 2
will be used here.

The second difficulty appears when output-feedback LPV controller needs to
be designed. In the output-feedback case the problem (4.40) is not convex in the
design variables and it is known that there exist no algorithms that can find the
global optimum in polynomial-time, i.e. the problem is NP-hard (see Chapter
3). In this section we will address this problem by making use of the method for
initial robust controller computation derived in Section 3.4 of Chapter 3. In this
method the output-feedback case is solved in two steps by designing a state-
feedback gain in the first step that is then used at the second step where the
remaining controller matrices are computed. We remind here that since in the
second step the problem remains nonconvex, a constraint on the structure of
the Lyapunov matrix is introduced to convexify it, which however increases the
conservatism of the method. Although this method converges, there are no guar-
antees that it will converge to the global or even to a local optimum of the cost
function (see Chapter 3 for more details on this method). Still, numerous exper-
iments performed with this method so far yield very good results in almost all
cases.
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4.3.2 State-Feedback Case

We will begin by considering the state-feedback case, assuming that the state is
directly measured. The controller is in this case taken of the form (4.37) with

K(f̂ , γf ) = F (f̂ , γf ), Ki = Fi, i = 0, 2, . . . , nf .

Let us also, in accordance with the optimization problem defined in (4.40), de-
fine the matrices

[
C̄∆

z D̄∆
zξ D̄∆

zu

]
(f)

.
=

[
γ−1Inz1

Inz2

]
[

C∆
z D∆

zξ D∆
zu

]
(f). (4.41)

Applying the state-feedback control law

u(k) = F (f̂ , γf )x(k) =

(

F0 +

nf∑

i=1

gi(f̂ , γf )Fi

)

x(k) (4.42)

results in the following closed-loop system

T∆
st.fb.(f̂ , γf ) :

{

xk+1=(A∆(f) + B∆
u (f)F (f̂ , γf ))xk + B∆

ξ (f)ξk

z̄k=(C̄∆
z (f) + D̄∆

zu(f)F (f̂ , γf ))xk + D̄∆
zξ(f)ξk

(4.43)

The following result then holds (consult, for instance, Lemma 3.3 on page 73).

Lemma 4.2 Suppose that the matrices P = P T and Li, i = 0, 1, . . . , nf , be such

that for all ∆ ∈∆, ∆̂ ∈ ∆̂, f̂ ∈ Ωf , γf ∈ Ωγ it holds that







P A∆(f)P + B∆
u (f)L(f̂ , γf ) B∆

ξ (f) 0

• P 0 (C̄∆
z (f)P + D̄∆

zu(f)L(f̂ , γf ))T

• • I (D̄∆
zξ(f))T

• • • I







> 0, (4.44)

where it is denoted L(f̂ , γf ) = L0 +

Ng∑

i=1

gi(f̂ , γf )Li, and where the elements of

the vector f are defined in (4.35). Then the state-feedback gain (4.42) with Fi =
LiP

−1, i = 0, 1, . . . , nf , achieves

sup
∆ ∈ ∆, ∆̂ ∈ ∆̂

f̂ ∈ Ωf , γf ∈ Ωγ

‖T∆
st.fb.(f̂ , γf )‖∞ ≤ 1. (4.45)

Proof: The proof follows by applying the discrete-time version of Lemma 3.3 on
page 73 on the closed-loop system (4.43) and then performing the convexifying
change of variables Li = FiP

−1. �

This result can be used to compute a feasible solution (if such exists) to the
problem (4.40) in the state-feedback case with fixed γ (note that γ enters the
matrix inequality (4.44) via the matrices C̄∆

z (f) D̄∆
zu(f), and D̄∆

zξ(f). A bisection
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algorithm on γ can then be used to approach the solution to the original opti-
mization problem (4.40).

Note that the matrix inequality (4.44) is linear in the unknowns, but not nec-

essarily convex in f̂ , ∆, ∆̂, and γf . For that reason the standard LMI tools cannot
be used. Instead, problem (4.44) fits very nicely in the probabilistic framework
developed in Chapter 2 of this thesis, which will therefore be used to solve it.
Before that, however, we first pay attention to the output-feedback case.

4.3.3 Output-Feedback Case

We next consider the output-feedback case and we will be searching for con-
troller of the form (4.37)-(4.38) needs to be designed. This controller results in
the following closed-loop system

T∆
out.fb.(f) :

{
xk+1 = Aclxk + Bclξk

z̄k = Cclxk + Dclξk,
(4.46)

with

Acl =

[
A∆(f) B∆

u (f)F (f̂ , γf )

Bc(f̂ , γf )C∆
y (y) Ac(f̂ , γf ) + Bc(f̂ , γf )D∆

yu(f)F (f̂ , γf )

]

,

Bcl =

[
B∆

ξ (f)

Bc(f̂ , γf )D∆
yξ(f)

]

,

Ccl =
[

C̄∆
y (f) D̄∆

yu(f)F (f̂ , γf )
]

, Dcl = D̄∆
zξ(f)ξk,

where the matrices C̄∆
y (f), D̄∆

yu(f), and D̄∆
zξ(f) are defined in (4.41).

Suppose that a state-feedback controller has been found in the form (4.42) by

using the result in Lemma 4.2. The remaining matrices Ac(f̂ , γf ) and Bc(f̂ , γf )
of the LPV controller (4.38) can be found using the following result

Lemma 4.3 Suppose that the matrices X = XT , Y = YT , Zi and Gi, i = 0, 1, . . . , nf ,

are such that for all ∆ ∈∆, ∆̂ ∈ ∆̂, f̂ ∈ Ωf , γf ∈ Ωγ it holds that







P M(f̂ , γf ) N(f̂ , γf ) 0

• P 0 R(f̂ , γf )T

• • I DT
zξ

• • • I







> 0 (4.47)

where the elements of the vector f are defined in (4.35), and where the matrices



116 Chapter 4 LPV Approach to Robust Active FTC

M(f̂ , γf ), N(f̂ , γf ), R(f̂ , γf ), and P are defined as

M(f̂ , γf ) =

[
M11(f̂ , γf ) M12(f̂ , γf )

M21(f̂ , γf ) M22(f̂ , γf )

]

,

M11(f̂ , γf ) = X(A∆(f) + B∆
u (f)F (f̂ , γf ))

M21(f̂ , γf ) = Y(A∆(f) + B∆
u (f)F (f̂ , γf ))− Z(f̂ , γf )−

G(f̂ , γf )(C̄∆
y (f) + D̄∆

yu(f)F (f̂ , γf ))

M12(f̂ , γf ) = −XB∆
u (f)F (f̂ , γf )

M22(f̂ , γf ) = Z(f̂ , γf ) + G(f̂ , γf )D̄∆
yu(f)F (f̂ , γf )−YB∆

u (f)F (f̂ , γf )

N(f̂ , γf ) =

[
XB∆

ξ (f)

YB∆
ξ (f)−G(f̂ , γf )D∆

yξ,i(f)

]

, P =

[
X

Y

]

,

R(f̂ , γf ) =
[

C̄∆
z (f) + D̄∆

zu(f)F (f̂ , γf ) −D̄∆
zu(f)F (f̂ , γf )

]
,

G(f̂ , γf ) = G0 +

nf∑

i=1

gi(f̂ , γf )Gi, Z(f̂ , γf ) = Z0 +

nf∑

i=1

gi(f̂ , γf )Zi.

(4.48)

Then the LPV controller (4.37)-(4.38) with

Ac(f̂ , γf ) = Y−1Z(f̂ , γf ),

Bc(f̂ , γf ) = Y−1G(f̂ , γf ),

is such that
sup

∆ ∈ ∆, ∆̂ ∈ ∆̂

f̂ ∈ Ωf , γf ∈ Ωγ

‖T∆
out.fb.(f)‖∞ ≤ 1. (4.49)

Proof: The proof follows the same lines as the proof of Theorem 3.3 on page 83
for the discrete-timeH∞ case. �

Similarly to the state-feedback case, the standard LMI solvers are not directly
applicable to this problem due to the nonlinear dependence of (4.47) on the pa-
rameters f̂ and γf . For that reason both (4.44) and (4.47) will be solved by using
the probabilistic method of Chapter 2. This is explained in the next subsection.

4.3.4 The Probabilistic Approach to the LPV Design

Next we propose an approach to the solution of the feasibility problem (4.44)
based on the probabilistic framework developed in Chapter 2. The algorithm is
iterative, and at each iteration two basic steps are performed. In the first step of
the i-th iteration the proposed probabilistic approach generates randomly

{∆(i), ∆̂(i), f̂ (i), γ
(i)
f } ∈∆× ∆̂× Ωf × Ωγ ,

where ∆(i) is generated according to the specified probability probability dis-

tribution f∆(∆), while ∆̂(i), f̂ (i), and γ
(i)
f – according to a uniform distribution.

This generated parameters are used at the second step of the algorithm where
an ellipsoid is computed that (a) has a smaller volume than the ellipsoid from
the previous iteration, and (b) contains the solution set (i.e. the set of all feasi-
ble points to the feasibility problem). In this way a sequence of ellipsoids with
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v

Solution set

Figure 4.6: The function v(·) is convex in the variables d. In the simple visualiza-
tion here the function is plotted for two different values of the parameters, say

{∆(i), ∆̂(i), f̂ (i), γ
(i)
f } and {∆(i+1), ∆̂(i), f̂ (i+1), γ

(i+1)
f }. The solution set is exactly

the intersection of all sub-optimal sets for v(.) computed for all possible values
of the parameters.

decreasing volumes is iteratively generated all containing the solution set. The
center of the ellipsoid then represents the current update on the variables in the
problem. The convergence of this algorithm in a finite number of iterations with
probability one is established under the assumptions that the solution set has a
non-empty interior and that the algorithm is initialized with an initial ellipsoid
that contains the solution set. A method for finding an initial ellipsoid will also
be proposed.

Before one can apply the algorithm from Chapter 2 one needs to transform
the variables (e.g. all free entries in the matrices (P,Li) in (4.44), or (X,Y ,Zi,Gi)
in (4.47)) into one vector of unknowns d ∈ RNd . The considered feasibility prob-
lem can then be rewritten in the form

U(d,∆, ∆̂, f̂ , γf ) = U0(∆, ∆̂, f̂ , γf ) +

Nd∑

i=1

Ui(∆, f̂ , γf )di > 0. (4.50)

We proceed by defining the following function

v(d,∆, ∆̂, f̂ , γf )
.
= ‖Π−[U(d,∆, ∆̂, f̂ , γf )]‖2F ,

where Π−[·] denotes the projection onto the cone of symmetric negative-definite
matrices, defined in (2.4) on page 36. Therefore the so-defined function v(·) is
such that

{

d : v(d,∆, ∆̂, f̂ , γf ) = 0, ∀{∆, ∆̂, f̂ , γf} ∈∆× ∆̂× Ωf × Ωγ

}

m

S =
{

d : U(d,∆, ∆̂, f̂ , γf ) > 0, ∀{∆, ∆̂, f̂ , γf} ∈∆× ∆̂× Ωf × Ωγ

}
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state-feedback output-feedback

sensor and
actuator

faults

P-LPV
(less conservative)

D-LPV
(P-LPV is too slow)

sensor, actuator
and component

faults

P-LPV
(D-LPV is n.a.)

P-LPV
(D-LPV is n.a.)

Table 4.1: Comparison between the deterministic LPV (D-LPV) method and the
probabilistic LPV (P-LPV) method. The preferred methods for each of the four
different classes of problems are given.

where S is the solution set. Thus, similarly to what was done in Chapter 2, we
have transformed the original feasibility problem (4.50), or equivalently (4.44),
into an optimization problem (see Figure 4.6), so that the ellipsoid algorithm
as presented in Algorithm 2.4 on page 59 can be used for solving it. The algo-
rithm for initial ellipsoid computation of Chapter 2, developed in Section 2.4 on
page 49 is also directly applicable to the problem in this section. These algo-
rithms will be omitted here to avoid unnecessary repetition.

4.4 Illustrative Examples

This section presents some examples that illustrate the capabilities of the two
methods presented in this chapter, i.e. the deterministic method from Section
4.2 and the probabilistic one from Section 4.3. Before proceeding with the exam-
ples, however, we want to point out again that the deterministic method deals
only with sensor and actuator faults, while the probabilistic method can deal
with component faults. Moreover, the deterministic method usually results in
very conservative controller due to the fact that the diagonal structure of the
FDD uncertainty is neglected by considering unstructured uncertainty in Lemma
4.1 and Theorem 4.1. For that reason the probabilistic method performs usually
better even though the deterministic method is based on a set of LPV controllers
designed for specific fault scenarios. A strong disadvantage of the probabilis-
tic method is that the computational speed strongly increases with the number
of variables in the optimization as a result of the significant increase of the vol-
ume of the initial ellipsoid (see equation (2.28) on page 48). For that reason,
the deterministic method would be the preferred method only in the output-
feedback case for systems with sensor and actuator fault (see Table 4.1). In the
state-feedback case the number of optimization variables is significantly smaller
so that the computational burden is less an issue; the less conservative proba-
bilistic method is, hence, a better candidate for such problems.
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Figure 4.7: Uncertainty size and load torque used in the simulation.
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Figure 4.8: The controlled output (real and measured) and the reference signal.

4.4.1 Deterministic Approach to LPV-based FTC

In this section the proposed approach is demonstrated on the diesel engine ac-
tuator benchmark model from Chapter 2. The model represents the behavior
of a brushless DC motor, which is the actuator part of a real-life speed gover-
nor for large diesel engines. Inputs are the motor velocity reference nref and the
load torque (disturbance) Ql, while the measured outputs are the motor velocity
nm and the gear output position so. As controlled signal considered here is the
motor velocity.

Note that the approach from this section is not capable of dealing with model
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uncertainties, and therefore a comparison with the results from Chapter 2 is not
possible. The approach presented in the next section, however, can deal with
both FDD and model uncertainties and will therefore be compared to the passive
method of Chapter 2.

In the simulation made here no model uncertainty is considered in the model
(2.37) on page 59, i.e. ∆ = 0 so that δ = δnom.

The simulated fault scenario is as follows:

• at t = 2.65 a partial sensor fault σ1
s = 0.5 in nm occurs,

• at t = 6.79 a partial sensor fault σ2
s = 0.7 in so occurs,

• at t = 13.21 a partial actuator fault σ1
a = 0.4 in nref occurs,

• at t = 16.11 a total fault σ1
s = 0 in nm occurs.

All faults remain active until the end of the simulation, so that after the occur-
rence of the fourth fault at time t = 16.11 all sensors and actuators are faulty.

The goal is that the motor velocity follows a reference signal. Note that all
sensors and actuators are faulty after t = 16.11. The uncertainty in the fault esti-
mates (see Figure 4.7 (left)) increases abruptly to its maximum value of 0.5 after
each fault occurrence, and then gradually reduces to its minimum of 0.1. In ad-
dition, a step-wise load torque (see Figure 4.7 (right)) is introduced throughout
the simulation. A set of controllers has been designed: a nominal parameter
dependent controller for the fault-free system, and a controller for the system
with a total fault in the measurement of the motor velocity. A total fault in the
other measurement (i.e. in so) is not considered as it results in an undetectable
system. Figure 4.8 depicts the measured value of the controlled output nm, its
real value, and the reference trajectory. It can be observed how after each fault
the performance degrades, and then gradually improves as the uncertainties in
the fault estimates become smaller. Note also that the true velocity follows the
reference trajectory even after the complete loss of its measurement.

4.4.2 Probabilistic Approach to LPV-based FTC

Example 1: Nominal LPV Control

The purpose of this first example is to illustrate the design of an LPV controller
of the form (4.42) on page 114, where the functions gi(·, ·) may have a very gen-
eral, nonlinear structure. We note here, that in the standard methods to LPV
controller design there are usually restriction on the structure (e.g. affine in the
scheduling parameters) of the LPV controller. No such restrictions are imposed
here.

Consider the problem of Section 2.6.2 on page 62, where a robust passive FTC
was designed for the diesel benchmark model (2.37) on page 59. We consider the
same example here with the parameters of the model defined in Tables 2.1 and
2.4.

We assume in this example that estimate of the vector δ = [η, Itot, ftot, Kq]
T

will be available on-line on the basis of which the LPV controller can be sched-
uled. The following structure (in terms of the functions gi(·, ·) in (4.42) on page 114)
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for the LPV controller was selected

F (δ) = F0 +
δ1δ4

δ2
F1 +

1

δ2
F2 +

δ3

δ2
F3. (4.51)

Note that in this example:

• The fault vector f̂ is represented by the parameter vector δ in the example
of Section 2.6.2;

• There is no FDD uncertainty, i.e. the size γf of the FDD uncertainty is equal
to zero. Later on, in Chapter 6 the same method will be applied to a real-
life brushless DC motor experimental setup and the LPV controller where
also FDD uncertainty with time-varying size will be considered;

• The parameter α, representing multiplicative actuator faults in the bench-
mark model (2.37), is here taken as uncertainty, i.e. it is assumed that the
FDD scheme does not provide on-line estimates of α. For that reason the
LPV controller needs to be robust with respect to variations in α in the in-
terval specified in Table 2.4 on page 62. In the next example the actuator
fault α will be the scheduling parameter, and δ will be the model uncer-
tainty. Of course, one may wish to take both α and δ as scheduling pa-
rameters that would improve the attainable performance even more. This
would, however, introduce more decision variables into the optimization
problem that would result in increased computational burden.

The probabilistic Algorithm 2.4 on page 59 is executed on this problem start-
ing with an initial upper bound γUB equal to the optimal value for γ that was
achieved by the robust controller in from Chapter 2. This performance is here
also achievable since by taking F1 = F2 = F3 = 0 in (4.51) one transforms
the LPV design problem to the robust controller design problem considered in
Chapter 2. Algorithm 2.4 was initiated with the following parameters: Tol = 0.1,
ε = 0, L = 100, γmax = 100, and γUB = 0.83125 (instead of infinity as suggested in
the initialization step of Algorithm 2.4). Table 4.2 summarizes the intermediate
results of the 10 performed iterations before convergence. The table provides at
each iteration the tested value for γ as well as its lower and upper bounds, γLB

and γUB , respectively. In addition to that the volume of the optimal ellipsoid at
each iteration is reported.

The optimal state-feedback LPV controller (4.51) computed by the algorithm
has matrices

F0 =
[
−5.311172× 102 −7.29898× 101 −2.0506× 10−5

]

F1 =
[

0.31225 4.4286× 10−2 3.0043× 10−7
]

F2 =
[
−0.2124 −3.0124× 10−2 −2.0436× 10−7

]

F3 =
[
−2.0867× 10−4 −2.9595× 10−5 −2.0077× 10−10

]

The optimal value for γ achieved by this LPV controller is γopt = 0.03198. In com-
parison, the robust controller designed in Section 2.6.2 of Chapter 2 achieved
γ = 0.83125. The performance achieved by the LPV controller is, therefore, im-
proved by a factor of more than 20.
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iter. γk γLB γUB vol(E∗k ) status

1. 0.08312 0 0.8312 5.520× 105 feas
2. 0.008312 0 0.08312 2.629× 101 infeas
3. 0.04572 0.00831 0.08312 1.621× 104 feas
4. 0.02702 0.00831 0.04572 3.123× 102 infeas
5. 0.03637 0.02702 0.04572 4.461× 103 feas
6. 0.03169 0.02702 0.03637 2.705× 103 infeas
7. 0.03403 0.03169 0.03637 1.228× 103 feas
8. 0.03286 0.03169 0.03403 7.253× 102 feas
9. 0.03228 0.03169 0.03286 6.436× 101 feas

10. 0.03198 0.03169 0.03228 4.336× 101 feas

Table 4.2: Summary of the iterations performed by Algorithm 2.4 for the design
of a nominal LPV controller. The optimal feasible value for γ at each iteration is
written in boldface.

Example 2: Robust Active LPV-based FTC

In this second example we consider again the same diesel benchmark example
of Section 2.6.2 of Chapter 2. The parameters of the model are again defined in
Tables 2.1 and 2.4.

Opposite to the example of the previous subsection, we assume here that
the vector δ = [η, Itot, ftot, Kq]

T represents the model uncertainty. The FDD
scheme will provide no estimates of δ, but of the multiplicative actuator fault
represented by the scalar α in the benchmark model. The LPV controller will,
therefore, have to be scheduled by the the actuator fault signal α and needs at
the same time to be robust with respect to parametric uncertainties, as repre-
sented by equations (2.38), (2.39) and (2.40) on page 60.

There is only one function g1(·, ·) (see (4.42) on page 114) that defines the
structure of the LPV controller in this example which is selected to be equal to α,
so that

F (α) = F0 + αF1. (4.52)

Again, the probabilistic Algorithm 2.4 on page 59 is executed on this problem
beginning with γUB = 0.83125, i.e. an upper bound equal to the optimal value
for γ that was achieved by the robust controller from Chapter 2. Algorithm 2.4
on page 59 was initiated with the same parameters as in the previous example:
Tol = 0.1, ε = 0, L = 100, γmax = 100, and γUB = 0.83125. Table 4.3 summarizes
the results of the optimization. In this example the optimal state-feedback gain
is F (α) = F0 + αF1 with

F0 =
[
−2.0692783× 103 −1.693148× 102 −7.4361× 10−5

]
,

F1 =
[

7.261707× 102 6.02549× 101 1.6434× 10−4
]
.

The optimal achieved value for the cost function γopt is 0.01138. As expected,
there is again improvement in the achievable performance by the LPV controller
as compared to the passive robust FTC designed in 2.6.2 on page 62. The achieved
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iter. γk γLB γUB vol(E∗k ) status

1. 0.08312 0 0.8312 1.493× 105 feas
2. 0.00831 0 0.08312 8.789× 100 infeas
3. 0.04572 0.008312 0.08312 9.052× 104 feas
4. 0.02702 0.008312 0.04572 4.670× 103 feas
5. 0.01766 0.008312 0.02702 3.407× 102 feas
6. 0.01299 0.008312 0.01766 6.459× 100 feas
7. 0.01065 0.008312 0.01299 1.484× 10−1 infeas
8. 0.01182 0.01065 0.01299 8.018× 10−2 feas
9. 0.01123 0.01065 0.01182 2.005× 10−2 infeas

10. 0.01153 0.01123 0.01182 3.062× 10−2 feas
11. 0.01138 0.01123 0.01153 2.728× 10−2 feas
12. 0.01131 0.01123 0.01138 5.849× 10−3 infeas

Table 4.3: Summary of the iterations performed by Algorithm 2.4 for the design
of robust active FTC. The optimal feasible value for γ at each iteration is written
in boldface.

performance by the LPV controller from this example is about a factor of 3 better
than the optimal one from the previous example, where the model parameters δ
(instead of the actuator fault signal α) were used as scheduling parameters, and
about a factor of 80 better than the performance achieved by the passive FTC
from Chapter 2.

4.5 Conclusion

This chapter presented a deterministic and a probabilistic approach to robust
active FTC design.

The deterministic approach to robust active FTC, presented in Section 4.2,
is applicable to systems in which multiplicative sensor and actuator faults can
occur, i.e. faults represented by scalings on the inputs and the outputs of the
system. The approach assumes that the real faults lie within given time-varying
intervals around their estimates. It consists of the off-line design of a set of
parameter-dependent controllers, where the sizes of the uncertainty intervals
are the scheduling parameters. The reconfigured controller is taken as a scaled
version of one of the predesigned controllers. The approach was demonstrated
in a case study with the diesel engine actuator benchmark model.

In Section 4.3 the idea exploited in Section 4.2 is further improved by mak-
ing use of the probabilistic framework of Chapter 2 that allows us to design the
LPV controller to depend not only on the sizes of the FDD uncertainties, but
also directly on the fault estimates. Furthermore, the probabilistic setting made
it possible to consider a much wider class of faults, namely faults that change
the state-space matrices of the system in a very general way. In addition to that
structured parametric uncertainty is considered by this method. The method
was illustrated by two examples, were a comparison was made with the results
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from Chapter 2 where a passive FTC was designed. The method from this chap-
ter clearly outperformed the passive method. This method will later on be tested
on a real-life experimental setup in Chapter 6, where an LPV controller will be
designed to be scheduled by not only the fault estimates (as in the examples
above), but also by the sizes of the FDD uncertainties.



5
Robust Output-Feedback MPC
Method for Active FTC

Model predictive control is a very suitable control methodology for active FTC
due to its self-reconfigurability property. In this chapter we propose a new tech-
nique to robust active FTC based on robust output-feedback MPC for systems
with parametric uncertainty. The main advantage of this method is that one no
longer needs to solve NP-hard optimization problems in the output-feedback
case like those considered in Chapter 3. Instead, the method of this chapter
derives the control action at each time instant by solving a robust linear least
squares problem using the probabilistic method of Chapter 2. The approach
consists in a combination of a Kalman filter and a finite-horizon MPC into one
min-max (worst-case) optimization problem. This problem is affine in the vari-
ables, being the system state and the control action in a future interval of time.
The solution to this optimization problem achieves both state estimation and
reference trajectory tracking. Given the state covariance matrix, the optimiza-
tion problem is solved in the probabilistic framework of Chapter 2. Additionally,
two methods for finding a covariance matrix that is compatible with all values of
the uncertainty were presented. The first one aims at minimization of the trace
of the covariance matrix and is computationally more involving, while the sec-
ond method is more conservative but much faster. The complete MPC approach
is tested on a case study with a model of one joint of a real-life space robotic ma-
nipulator.

125
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5.1 Introduction

Model predictive control (MPC) is an industrially relevant control strategy that
has been receiving a lot of attention lately. Due to the underlying optimiza-
tion that needs to be executed at each time instant, it is an attractive method
mainly for slower processes such as those encountered in the chemical indus-
try (Kothare et al. 1996). This optimization is based on matching (in the vector
2-norm sense) a prediction of the system output to some desired reference tra-
jectory. The latter is assumed to be known in advance. In addition, MPC features
the property that it can handle constraints on the inputs, outputs and states of
the system in an explicit way by incorporating them into the optimization prob-
lem (see e.g. (Cuzzola and Ferrante 2001; Bemporad et al. 2002; Bemporad and
Garulli 2000)). For an overview of the approaches based on MPC the reader is re-
ferred to (Clarke and Mohtadi 1989; Bemporad and Morari 1999; Bemporad et al.
2002; Scokaert and Mayne 1998; Nikolaou 2001; Bemporad and Garulli 2000) and
the references therein.

Most robust state-space approaches to MPC are derived under the assump-
tion, which is rather restrictive in practice, that the system state is exactly known
(measured) (Badgwell 1997; Bemporad et al. 2002; Kothare et al. 1996; Cuzzola
and Ferrante 2001; Casavola et al. 2000). Under this assumption robust MPC
techniques based on LMIs have also been proposed in the literature for systems
with polytopic uncertainty (Kothare et al. 1996; Casavola et al. 2000; Cuzzola and
Ferrante 2001). In contrast to the uncertainty-free case a state observer cannot
be used to supply the missing state information in the MPC when model uncer-
tainty is considered. This problem is not trivial due to the fact that the separation
principle is no longer valid. It is a well-known fact in the field of robust control
theory that the problem of designing an output-feedback controller for systems
with structured uncertainty is an NP-hard Bilinear Matrix Inequality (BMI) op-
timization problem (Toker and Özbay 1995). On the other hand, using an un-
structured uncertainty representation usually results in a convex problem, but
this is often achieved only at the expense of unnecessary conservatism, that for
some applications might be overly disadvantageous.

In this chapter we present an approach to the design of finite-horizon robust
output-feedback MPC. The approach integrates the Kalman filter recursions in
the finite-horizon MPC optimization. Including uncertainty results in a min-
max (worst-case) optimization problem. This problem is affine in the variables,
being the current system state and the control action in a future interval of time.
Solving this optimization problem achieves both state estimation and reference
trajectory tracking. The main advantage of this problem formulation is that one
does no longer have to solve difficult BMI optimization problems to find a con-
troller. Another advantage is that constraints in the control action can easily be
incorporated. The drawback is that the robust stability of the resulting closed-
loop system cannot be theoretically guaranteed.

In order to solve the underlying min-max optimization problem the prob-
abilistic framework developed in Chapter 2 is used. The advantages of using
this probabilistic approach can be outlined as follows. On the first place, at
each iteration the problem remains of a reasonably small size since only one
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parametrization of the uncertain system is used (and not a large amount of ver-
tex systems as is often the case with LMI approaches applied to systems with
polytopic uncertainty). Secondly, a rather general class of uncertainties can be
considered – the only assumption that is imposed is that the system state-space
matrices remain bounded over all possible values of the uncertainties. And third,
as will become clear later, the approach allows us to significantly reduce the
number of variables in the underlying optimization problem. Similarly to the
other approaches to MPC, a drawback is the computational complexity.

In the Kalman filter recursion at each iteration the covariance matrix of the
state vector is required. Whenever the covariance matrix is given, the result-
ing problem is a robust LMI problem that may depend on the uncertainty in
a very general, nonlinear way. This problem can also be solved by making use
of the ellipsoid algorithm for probabilistic design from Chapter 2. However, if
the covariance matrix of the state is unknown, it needs to be computed at each
time instant on-line so that it is compatible with all possible values of the un-
certainty. It is shown in the chapter that the minimum-trace covariance matrix
can be found by again using the probabilistic ellipsoid algorithm. For this pur-
pose a separate optimization for the covariance matrix needs to be performed
on-line. This optimization, however, additionally increases the computational
burden that might sometimes be undesirable. Whenever it is not required that
the covariance matrix at each iteration has the minimal trace, a second (faster)
algorithm is also proposed for the computation of a covariance matrix so that it
is compatible with all values of the uncertainty.

The chapter is organized as follows. In Section 5.2 the notation is explained
and the problem is formulated. In Section 5.3 it is rewritten as a least squares
optimization problem and it is discussed how it can be solved by making use
of the probabilistic framework given the covariance matrix of the state vector.
The computation of the covariance matrix is next considered in Section 5.4. The
method is tested in a case study with a model of one joint of a real-life space
robotic manipulator in Section 5.5. Finally, Section 5.6 concludes the chapter.

5.2 Notation and Problem Formulation

The notation used in this chapter is as follows. For a vector x in an n-th dimen-
sional Euclinean space, x ∈ R

n, and an n-by-n symmetric matrix W ∈ R
n×n,

the weighted norm is denoted as ‖x‖W = xT Wx. The symbol ⊗ denotes the
Kronecker product, and symbol ⋆ will denote entries in LMIs that follow from
symmetry. Further, for matrices A and B of appropriate dimension, the inner
product is defined as 〈A,B〉 = trace(AB). The notation x ∼ N (x̄, S) will be used
to make clear that x is a random Gaussian process with mean x̄ and covariance
S.

For a symmetric matrix A, the projection onto the cone of symmetric positive-
definite matrices is defined as

Π+[A]
.
= arg min

S≥0
‖A− S‖F . (5.1)

Similarly, the projection onto the cone of symmetric negative-definite matrices
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is defined as
Π−[A]

.
= arg min

S≤0
‖A− S‖F . (5.2)

These projections have some useful properties summarized in Chapter 2, Lemma
2.1 on page 36.

Finally, for a random variable xk, x̂k+i|k will denote the prediction of xk+i

made at time instant k (i.e. by using the input-output measurements up to time
instant k).

In this chapter we consider the following discrete-time linear system

S :







xk+1 = A∆xk + B∆
u uk + Q∆ξx

k

zk = C∆
z xk + D∆

zuuk + R∆
z ξz

k

yk = C∆
y xk + D∆

yuuk + R∆
y ξy

k ,
(5.3)

where x ∈ R
n is the state of the system which is here not assumed to be mea-

sured, u ∈ R
m is the control action, y ∈ R

p is the measured output, z ∈ R
nz

represents the controlled output of the system, and ξx, ξz and ξy are white Gaus-
sian noises (i.e. random zero-mean processes with covariance matrices equal
to the identity matrix). The matrices Q∆, R∆

z and R∆
y are symmetric positive-

definite matrices. The model uncertainty ∆ is assumed to belong to some (pos-
sibly structured) bounded uncertainty set ∆ and to have a known probability
density function f∆ inside this uncertainty set. There are no further restrictions
on the way in which the uncertainty ∆ enters the state-space matrices of the sys-
tem, as long as these remain bounded over all ∆ ∈ ∆ (see (2.6) on page 37). It is
further assumed that samples of ∆ can be generated with the selected probabil-
ity density function f∆. The reader is referred to (Calafiore et al. 2000, 1999) for
more details on the available algorithms for generation of random uncertainty
samples.

This chapter is concerned with the problem of finding a control action uk that
makes the controlled output zk of the uncertain system (5.3) track a reference
trajectory signal rk, which is assumed to be known in advance.

Remark 5.1 We note here that the algorithm in this chapter can be used for both
passive FTC (by means of representing the possible faults as uncertainties as in
Chapters 2 and 3) or as active FTC (by changing the internal model (5.3) after the
occurrence of a fault in the system). Due to that fact that the predictive controller
at each time instant depends directly on the state-space matrices of the system we
will not explicitly write the dependence on the fault signal f . Instead, model (5.3)
is assumed in the sequel to represent either the nominal or some faulty mode of
operation of the system. The model is allowed to change during the operation of
the system.

Remark 5.2 We also note that FDD uncertainty can also be treated by this method.
To this end one could follow the same idea that was exploited in Chapter 4, namely
to consider the uncertain faulty system (4.34) on page 111 with some uncertainty
representation of the fault signal f as in equation (4.35). This would result in an
uncertain system where the uncertainty is a combination of the original model
uncertainty and the FDD uncertainty represented by equation (4.35).
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5.3 Integrated State Prediction and Trajectory Track-

ing Control

In this section a robust output-feedback MPC control algorithm will be proposed
by first writing both Kalman filtering problem and the finite-horizon MPC as
least squares problems, and then combining them into one min-max optimiza-
tion problem. The probabilistic approach from Chapter 2 will subsequently be
used for solving it.

5.3.1 The Kalman filter over a finite-time horizon

Suppose, to begin with, that no uncertainty is present in the system that the in-
put uk to the system (5.3) is given, and consider the state-estimation problem
from available input-output measurements. In (Verhaegen and Verdult 2003),
the Kalman filtering problem over a finite time horizon is formulated as a least-
squares problem. To summarize this, let the system state xk be first written in
the general covariance representation as xk ∼ N (x̂k|k−1, Sk|k−1), i.e. a random
gaussian process with mean x̂k|k−1 and covariance Pk|k−1 = Sk|k−1S

T
k|k−1 > 0. It

is assumed that x̂0|−1 and P0|−1 are given. Combining this representation of the
state xk with the dynamic equations of the system (5.3) results in

x̂k|k−1 = xk + Sk|k−1nk

yk = Cyxk + Dyuuk + Ryξy
k

−Buuk = Axk − xk+1 + Qξx
k

where nk is a zero-mean stochastic variable with covariance matrix equal to the
identity matrix. Writing these equations over a finite-time window [k − N, k]
leads to the set of equations

Ỹ = F̃X̃ + L̃Ξ̃, (5.4)

where

Ỹ =
















x̂k−N |k−N−1

yk−N −Dyuuk−N

−Buuk−N

yk−N+1 −Dyuuk−N+1

−Buuk−N+1

...
yk −Dyuuk

−Buuk
















, F̃ =
















In 0 0 . . . 0 0
Cy 0 0 . . . 0 0
A −I 0 . . . 0 0
0 Cy 0 . . . 0 0
0 A −I . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . Cy 0
0 0 0 . . . A −I
















X̃ =










xk−N

xk−N+1

xk−N+2

...
xk+1










, Ξ̃ =












nk−N

ξy
k−N

ξx
k−N

...
ξy
k

ξx
k












, L̃ =





Sk−N |k−N−1

IN+1 ⊗

[
Ry

Q

]



 .
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Above, the vector Ỹ contains only signals available at time instant k. The Kalman
filter over a finite time horizon is then formulated as the following least-squares
problem (Verhaegen and Verdult 2003)






x̂k−N |k

...
x̂k+1|k




 = arg min

X̃

‖L̃−1Ỹ − L̃−1F̃X̃‖22. (5.5)

For more details the interested reader is referred to (Verhaegen and Verdult 2003),
where the authors propose a recursive-time solution to this problem by exploit-
ing its structure. This approach will not be pursued here since it requires the
exact knowledge of the system matrices. Instead, it will be combined with MPC
into one robust least-squares optimization problem, which will subsequently be
addressed in the probabilistic framework.

5.3.2 Combination of the Kalman filter and MPC

Let us now go back to the original problem of trajectory tracking for the uncer-
tain system (5.3). In this section we combine the Kalman filter with a finite-
horizon MPC. For our purposes it will prove to be sufficient to consider a fil-
tering interval consisting of only one time instant k, i.e. N = 0 in (5.4). This is
done here for the sake of brevity.

Provided that the reference trajectory signal rk is given (at least N2 samples
ahead in the future), in the conventional MPC the control action uk is computed
as the solution to the following optimization problem

min
uk+i, i=1,...,Nu

Jk =

N2∑

i=N1

‖rk+i − ẑk+i|k‖
2
W +

Nu∑

i=1

‖uk+i‖
2
WU

,

where N1, and N2 define the prediction horizon, and Nu ≤ N2 - the control hori-
zon, and where W = WT > 0 and WU = WT

U ≥ 0 are weighting matrices. The
standard assumption is imposed that the control action remains constant after
the control horizon (Clarke and Mohtadi 1989).

Assumption 5.1 uk+i = uk+Nu
for i ≥ Nu.

Remark 5.3 It needs to be pointed out here that if the system matrices depend
on some fault signal f as in (4.34) on page 111 then the additional assumption
will have to be imposed either that the fault signal f remains constant during the
prediction horizon1 or that it varies but its variations are known in the interval
[k, k+k2]. The reason for that assumption is that the MPC is based on a prediction
of the output signal in the future. Below we assume that f remains constant in the
future as this significantly simplifies the expressions that will follow.

1A similar assumption to that will be imposed later on in Chapter 7 where the mode probabili-
ties of the Interacting Multiple-Model estimator are assumed constant over the control horizon (see
Assumption 7.2 on page 180).
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In the sequel we will suppose, without any loss of generality, that the weight-
ing matrix WU = 0. This is done only to keep the notations as simple as possible;
deriving the results for nonzero WU is straightforward.

Given x̂k+1|k and {uk+1, . . . , uk+i}, we can represent the prediction of the
controlled output zk+i (i ≥ 2) as follows

ẑk+i = C∆
z (A∆)i−1x̂k+1|k + C∆

z

i−1∑

j=1

(A∆)i−j−1B∆
u uk+j + D∆

zuuk+i,

Since we want the controlled output to track the reference trajectory signal
rk then, under Assumption 5.1, we write














x̂k|k−1

yk −D∆
yuuk

−B∆
u uk

rk+N1

rk+N1+1

...
rk+N2














=

[
M∆

11 0
M∆

21 M∆
22

]















xk

xk+1

uk+1

...
uk+N1−1

...
uk+Nu















+ L∆












nk

ξy
k

ξx
k

ξ̃k+N1

...

ξ̃k+N2












, (5.6)

where

M∆
11 =





I 0
C∆

y 0
A∆ −I



 , M∆
21 =








0 C∆
z (A∆)N1−1

0 C∆
z (A∆)N1

...
...

0 C∆
z (A∆)N2−1








,

L∆ =







Sk|k−1

R∆
y

Q∆
0

0 ĨN2−N1+1 ⊗W−1







M∆
22 =











C
∆
N1−2 . . . D∆

zu . . . 0
C

∆
N1−1 . . . C

∆
0 . . . 0

...
. . .

...
. . .

...

C
∆
N2−2 . . . C

∆
N2−N1

. . .

N2−1∑

i=Nu+1

C
∆
N2−i−1 + D∆

zu











,

C
∆
k = C∆

z (A∆)kB∆
u .

(5.7)

The goal is to solve (5.6) in a least-squares sense in order to estimate the state
and at the same time to push the predicted output as close as possible to the
reference signal rk+i. Note that the state xk+1 affects the predicted output ẑk+i

during the prediction horizon. The idea is that when the predicted output ẑk+i

approximately equals the reference trajectory rk+i over the prediction horizon
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[k + N1, k + N2] we could update the state xk+1 not only by looking at the past
data (the third row in equation (5.6)) but also by looking in the future, i.e. by
accounting for the output that we expect in the future. Note that if one only
considers the past data one would then want to take xk+1 = A∆xk +B∆

u uk which
due to the presence of uncertainty defines here a set for xk+1, which one could
try to reduce by looking at the expected output in the future. However, it still
needs to be investigated under what conditions (e.g. on the reference signal,
problem parameters, etc.) this approach would provide beter results that when
xk+1 is computed by only accounting for the past data. For instance, if due to
the initial state the predicted output is initially very different from the reference
signal the algorithm might experience difficulties. Note also, that the weighting
matrix W could be used to put more weighting on the control problem and less
on the estimation, and vise versa.

The over-determined system of equations (5.6) can be written more com-
pactly as

a∆ = F∆b + L∆Ξ.

We denote the dimensions of the vectors a∆ and b as

Na = dim a∆ = 2n + p + (N2 −N1 − 1)nz,
Nb = dim b = 2n + Num,

and we assume that the matrix F∆ is full column rank for every ∆ ∈∆.

Assumption 5.2 rank F∆ = Nb, ∀∆ ∈∆.

When a specific application is considered this can be ensured by appropri-
ate selection of the parameters N1, N2, and Nu (provided that the system is left-
invertible). Note also that the matrix L∆ is invertible as it contains positive defi-
nite matrices on its diagonal.

The problem of combined robust state estimation and MPC is then defined
as the following min-max optimization problem

b̂ = arg min
b

max
∆∈∆

‖(L∆)−1(a∆ − F∆b)‖22. (5.8)

Once this optimization problem is solved we take





x̂k|k

x̂k+1|k

uk+1



 = [I2n+m 0]b̂.

Note that the matrix Sk+1|k also needs to be computed in order to be used at
the next time instant. Its computation is addressed in Section 5.4.

Remark 5.4 It should be pointed out that whenever the system matrices are affinely
dependent on a number of uncertain parameters then this results in a polytopic
system. Using the state equation in (5.3), the set of equations (5.6) can be extended
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to
















x̂k|k−1

yk − D∆
yuuk

−B∆
u uk

rk+1

0
...

rk+N2

0
















=

















I 0 0 . . . 0 0 0 . . . 0
C∆

y 0 0 . . . 0 0 0 . . . 0
A∆ −I 0 . . . 0 0 0 . . . 0

0 C∆
z 0 . . . 0 0 D∆

zu . . . 0
0 A∆ −I . . . 0 0 B∆

u . . . 0
...

...
...

. . .
...

. . .
...

. . .
...

0 0 0 . . . C∆
z 0 0 . . . D∆

zu

0 0 0 . . . A∆ −I 0 . . . B∆
u




































xk

xk+1

xk+2

...
xk+N2

xk+N2+1

uk+1

...
uk+Nu




















+











Sk|k−1

R∆
y

Q∆
0

0 IN2 ⊗
[

W−1

Q∆

]
























nk

ξy
k

ξx
k

ξ̃k+1

ξx
k+1

...
ξx

k+N2














,

so that the resulting optimization problem (5.8) can be represented as a system
of LMIs, one for each vertex of the convex polytope. Interior point methods can
then be used to solve this system of LMIs (Boyd et al. 1994), which are known to
be computationally very fast. However, even for small values of n, Nu, and N2

this approach often leads to an extremely large number of LMIs that go beyond
the capabilities of the existing LMI solvers. It is, in fact, an NP-hard problem in
the number of vertex systems (Calafiore and Polyak 2001). The probabilistic ap-
proach, on the other hand, is iterative and each iteration is performed for only one
randomly generated uncertainty sample. This has the advantage that: (1) at each
iteration the problem remains of the size of the original system dimension, (2) no
assumption (e.g. affine dependence, etc.) is imposed on the way the system ma-
trices depend on the uncertain parameters as long as they remain bounded, and
(3) it allows us to significantly reduce the number of variables by considering the
least-squares problem in equation (5.6) instead, which has N2n variables less.

We will refer to this control algorithm as the integral predictive control (iPC)
approach. It should be noted that equation (5.6) is not convex in the uncertainty
∆, so that one cannot make use of LMI approaches here. Instead, this problem
can be addressed in the probabilistic framework of Chapter 2. More specifically,
problem (5.8) has the form of the robust linear least squares problem considered
in Section 2.4.2 on page 54 (see (2.32) on page 54), where it was demonstrated
how the probabilistic approach can be used for solving it. Here we will skip the
details to avoid unnecessary repetition. Note, however, that constraints are also
considered in the robust LLS problem in Section 2.4.2 that allows us here to in-
troduce constraints on the control action in the optimization problem (5.8) in a
straightforward manner.

We also note that due to the fact that the matrix (L∆)−1F∆ is full column
rank (see Assumption 5.2 and the subsequent discussion), the initial ellipsoid
computation falls under Case 2 on page 57 so that no upper and lower bounds
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on the vector of variables need to be imposed here (as, for instance, in Case 3 on
page 57).

In the next section we concentrate on the problem of the computation of the
covariance matrix Pk+1|k = Sk+1|kST

k+1|k that will be required for the optimiza-

tion at time instant (k + 1).

5.4 Computation of the covariance matrix Pk+1|k

In this subsection we are concerned with finding the minimum-trace state co-
variance matrix Pk+1|k that is compatible with all possible values of the uncer-
tainty. Its “square root” Sk+1|k is then to be used in the optimization problem at
the next time instant (k + 1). To this end we following the same lines as in Ver-
haegen and Verdult (2003). Assuming that the state estimate at time instant k is
represented as

x̂k|k−1 = xk + Sk|k−1nk,

the we want to obtain a similar expression for time instant k + 1

x̂k+1|k = xk+1 + Sk+1|kñk, (5.9)

with ñk zero mean and covariance matrix equal to the identity matrix.
Pre-multiplying the first three lines in Equation (5.6) by the non-singular ma-

trix

Tl =





C∆
y −I 0

A∆ 0 −I
I 0 0



 ,

results in the equation





C∆
y x̂k|k−1 + D∆

yuuk − yk

A∆x̂k|k−1 + B∆
u uk

x̂k|k−1





=





0 0
0 I
I 0





[
xk

xk+1

]

+





C∆
y Sk|k−1 R∆ 0

A∆Sk|k−1 0 Q∆

Sk|k−1 0 0









nk

−ξy
k

−ξx
k



 .

(5.10)

Let now Tr be an orthogonal transformation matrix (i.e. TrT
T
r = I) such that





C∆
y Sk|k−1 R∆ 0

A∆Sk|k−1 0 Q∆

Sk|k−1 0 0



TrT
T
r





nk

−ξy
k

−ξx
k



 =





R̃∆ 0 0

G̃∆ S∆
k+1|k 0

• • •









νk

ñk

ξ̃k



 ,

where the symbols • denote entries of no importance for the sequel. Note that
the first row in (5.10) is independent on the variables xk and xk+1 and νk can
therefore be directly expressed, i.e. νk = (R̃∆)−1(C∆

y x̂k|k−1 + D∆
yuuk − yk). Sub-

stituting this expression in the second row and subsequently moving the term
G̃∆νk to the left side of the equation, one gets an expression of the form (5.9).
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Thus S∆
k+1|k is the square-root covariance matrix which, however, depends on

the uncertainty ∆ and is therefore unknown. For that reason the covariance ma-
trix will be computed so as to be compatible with all values of the uncertainty.
This motivates us to consider the following optimization problem

minimize
γ, Pk+1|k

γ

subject to: γ ≥ trace(Pk+1|k)
Pk+1|k ≥ S∆

k+1|k(S∆
k+1|k)T , ∀∆ ∈∆.

(5.11)

For simplicity of notations we denote M(∆) = S∆
k+1|k(S∆

k+1|k)T .

To solve the optimization problem (5.11), we will again make use of the prob-
abilistic approach. To this end we consider the feasibility problem, namely for
a fixed γ > 0 we search for a symmetric matrix Pk+1|k such that the matrix in-
equality

[
γ − trace(Pk+1|k)

Pk+1|k −M(∆)

]

≥ 0, (5.12)

holds for all ∆ ∈∆. Then Algorithm 2.4 on page 59 can be used to minimize γ.
Let pij denote the (i, j) entry of the matrix Pk+1|k. In order to apply the ellip-

soid method for probabilistic design we will first need to collect the free elements
of the matrix variable Pk+1|k in the feasibility problem (5.12) in one vector , i.e.

d
.
=
[

p11 . . . p1n p22 . . . p2n p33 . . . pnn

]T
∈ R

1
2 n(n+1).

The feasibility problem (5.12) can then be equivalently rewritten in the form

V ∆
γ (d) = V ∆

γ,0 +

1
2 n(n+1)
∑

i=1

V ∆
γ,idi ≥ 0, ∀∆ ∈∆,

where di denotes the i-th entry of the vector d, and where the matrices V ∆
γ,0 and

Vγ,i are derived from (5.12). For this problem the feasibility set is defined as

SP
.
= {d : V ∆

γ (d) ≥ 0, ∀∆ ∈∆}.

The goal here is thus to find a vector d such that V ∆
γ (d) ≥ 0 for all ∆ ∈ ∆, on

the basis of which an initial ellipsoid that contains SP can be formed. This initial
ellipsoid would then be used to initialize the probabilistic ellipsoid algorithm,
that is now to be applied to the following function

w(d,∆)
.
= ‖Π−[V ∆

γ (d)]‖2F ≥ 0, (5.13)

that has the property that for any d∗ ∈ SP , it holds that w(d∗,∆) = 0 for all
∆ ∈∆.

Then similarly to Lemma 2.3 we have the following result.

Lemma 5.1 The function w(d,∆), defined in (5.13), is convex and differentiable
in d, with gradient given by

∇w(d,∆) = 2









trace
(
V ∆

γ,1Π
−[V ∆

γ (d)]
)

trace
(
V ∆

γ,2Π
−[V ∆

γ (d)]
)

...

trace
(

V ∆
γ, 1

2 n(n+1)
Π−[V ∆

γ (d)]
)









(5.14)
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The proof is similar to that of Lemma 2.3 on page 40 and will therefore will be
omitted here.

Having an expression of the gradient of the function w(d,∆) one can make
use of Algorithm 2.2 to find a feasible solution for a fixed γ, provided that an
initial ellipsoid containing the feasibility set SP is given. One would then only
need to make the following substitutions in Algorithm 2.2

d ← x,

Q̃ ← P,
w ← v.

(5.15)

Let us now concentrate on the problem of finding the initial ellipsoid

E(0) = {d : (d− d(0))T Q̃−1
0 (d− d(0))} ⊇ SP . (5.16)

In order to find d(0) and Q̃0 we will first try to find a box containing the solu-
tion set SP , after which an ellipsoid that contains this box can easily be formed.
Thus we now first consider on the problem of finding (finite) upper d and lower
d bounds on the vector d that guarantee that

{d : d ≤ d ≤ d} ⊇ SP . (5.17)

Note that the matrix inequality problem (5.12) is infeasible if for some ∆∗ ∈ ∆
it holds that γ < trace(M(∆∗)), in which case γ needs to be increased. We have
the following result.

Theorem 5.1 Let mij , i = 1, 2, . . . , n, j = 1, 2, . . . , n, denote the elements of the
matrix M(∆∗) for some ∆∗ ∈∆, and suppose that γ > trace(M(∆∗)). Define the
scalars

p
ii

= mii, i = 1, 2, . . . , n,

pii = γ −
∑

j 6=i

mjj , for i = 1, 2, . . . , n,

pij = mij + γ − trace(M(∆∗)), i, j = 1, 2, . . . , n, j 6= i,

p
ij

= mij − γ + trace(M(∆∗)), i, j = 1, 2, . . . , n, j 6= i.

(5.18)

Let also Pk+1|k = [pij ] be any symmetric matrix for which (5.12) holds for all ∆ ∈
∆. Then

p
ij
≤ pij ≤ pij , (5.19)

for all i = 1, 2, . . . , n and j = 1, 2, . . . , n.

Proof: From (5.12) it follows that Pk+1|k ≥ M(∆) for all ∆ ∈ ∆. Therefore it
must also hold that Pk+1|k ≥M(∆∗) = [mij ] for any fixed ∆∗ ∈∆. Therefore

pii ≥ mii = p
ii
, i = 1, 2, . . . , n,

so that the lower bounds in (5.19) on the diagonal elements pii of Pk+1|k has been
shown.
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On the other hand, Pk+1|k should be such that trace(Pk+1|k) ≤ γ. This im-
plies that

γ ≥ pii +
∑

j 6=i

pjj ≥ pii +
∑

j=1,...,n

mjj , ∀i = 1, 2, . . . , n, (5.20)

so that
pii ≤ γ −

∑

j=1,...,n

mjj = pii, (5.21)

that completes the proof for the upper bounds on the diagonal elements pii of
Pk+1|k.

In order to find lower and upper bounds on the non-diagonal entries we no-
tice that Pk+1|k ≥M(∆∗) implies

[
pii pij

pji pjj

]

≥

[
mii mij

mji mjj

]

, ∀i 6= j.

Using the Schur complement the above inequality is equivalent to

∣
∣
∣
∣

pjj −mjj ≥ 0,
(pii −mii)− (pij −mij)(pjj −mjj)

−1(pji −mji) ≥ 0.

From the second inequality, making use of the symmetry of the matrices M(∆∗)
and Pk+1|k (i.e. mij = mji and pij = pji), it follows that

|pij −mij | ≤
√

(pii −mii)(pjj −mjj)

≤
√

(pii −mii)(pjj −mjj),

Substitution of equation (5.21) then results in

|pij −mij | ≤
√

(pii −mii)(pjj −mjj)

=
√

(γ − trace(M(∆∗)))2

= |γ − trace(M(∆∗))|.

And since γ ≥ trace(M(∆∗)), we have shown that Pk+1|k ≥M(∆∗) implies

pij ≤ mij + γ − trace(M(∆∗)) = pij ,
pij ≥ mij − γ + trace(M(∆∗)) = p

ij
, (5.22)

so that also the upper and lower bounds on the non-diagonal elements of Pk+1|k

have been derived. �

Using the result of Theorem 5.1, the upper and lower bounds on the elements
of the vector d

d =
[

p11 . . . p1n p22 . . . p2n p33 . . . pnn

]T
,

d =
[

p
11

. . . p
1n

p
22

. . . p
2n

p
33

. . . p
nn

]T
.

(5.23)

are such that (5.17) holds, i.e. the solution set SP is contained in the box R =
{d : d ≤ d ≤ d}. It thus only remains to form an ellipsoid around the box R that
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Algorithm 5.1 (Algorithm for computation of Pk+1|k)

INITIALIZATION:

Step 1. DENOTE M(∆∗) = [mij ] FOR SOME ∆∗ ∈∆.

Step 2. COMPUTE pij AND p
ij

FOR i, j = 1, 2, . . . , n USING EQUATIONS

(5.18).

Step 3. FORM THE VECTORS d AND d USING (5.23)

Step 4. FORM THE INITIAL ELLIPSOID (5.16) PARAMETRIZED BY (5.24).

Step 5. RUN ALGORITHM 2.2 WITH SUBSTITUTIONS (5.15). WITH THE

OBTAINED SOLUTION d∗
FORM

Pk+1|k =








d∗1 d∗2 . . . d∗n
⋆ d∗n+1 . . . d∗2n−1
...

...
. . .

...
⋆ ⋆ ⋆ d∗n(n+1)/2








.

would then also contain SP . Using Lemma 2.6 on page 52 the initial ellipsoid

can be taken as E
(0)
P = {d : (d− d(0))T Q̃−1

0 (d− d(0))}with

d(0) =
1

2
(d + d), Q̃0 =

dim d

4

[
diag(d− d)

]2
, (5.24)

with d and d defined in (5.23).
The complete procedure for obtaining the covariance matrix is summarized

in Algorithm 5.1.

A faster algorithm for finding Pk+1|k

A more conservative, but computationally faster way to compute the covariance
matrix Pk+1|k so that it is compatible with all possible values of the uncertainty
is to try to find it so that

Pk+1|k ≥M(∆), ∀∆ ∈∆,

i.e. without the minimization over the trace of Pk+1|k in (5.11). To this end we
propose the following algorithm for computation of Pk+1|k.

The following result sows that by computing Pk+1|k using Algorithm 5.2 en-

sures that Pk+1|k ≥M(∆(i)) (at least) for the generated uncertainty samples ∆(i).

Lemma 5.2 Suppose that L iterations of Algorithm 5.1 are performed. Then the

matrix Pk+1|k = P
(L)
k+1|k is such that
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Algorithm 5.2 (A faster algorithm for computation of Pk+1|k)

INITIALIZATION: SMALL ε > 0, INTEGER K > 0.

Step 1. TAKE P
(0)
k+1|k = εI AND SET i = 1.

Step 2. SET i← i + 1.

Step 3. GENERATE A RANDOM SAMPLE ∆(i) WITH PROBABILITY DISTRIBU-
TION f∆.

Step 4. COMPUTE

P
(i)
k+1|k = P

(i−1)
k+1|k −

[

P
(i−1)
k+1|k −M(∆(i))

]−

(5.26)

Step 5. IF ‖P (i)
k+1|k−P

(i−K)
k+1|k ‖F = 0 THEN TAKE Pk+1|k = P

(i)
k+1|k STOP ELSE

GOTO STEP 2.

(i) Pk+1|k > 0, and

(ii) Pk+1|k ≥M(∆(i)), for i = 1, 2, . . . , L.

Proof: (i) Noting that
[

P
(i−1)
k+1|k −M(∆(i))

]−

≤ 0,

it follows from equation (5.26) that

P
(i)
k+1|k ≥ P

(i−1)
k+1|k (5.27)

for all i = 1, . . . , L, and thus Pk+1|k ≥ P
(0)
k+1|k > 0.

(ii) Note that

P
(i)
k+1|k = P

(i−1)
k+1|k −

[

P
(i−1)
k+1|k −M(∆(i))

]−

= P
(i−1)
k+1|k −M(∆(i)) + M(∆(i))−

[

P
(i−1)
k+1|k −M(∆(i))

]−

= M∆(i)

+
[

P
(i−1)
k+1|k −M(∆(i))

]+

≥ M(∆(i))

which together (5.27) implies (ii). �

5.5 A Case Study

The case study presented has the purpose to outline the capabilities of the newly
proposed method to robust output-feedback MPC. As discussed in the intro-
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Parameter: Symbol: Value:

gearbox ratio N [−294.478, −226.722]
joint angle of inertial axis Ω variable

effective joint input torque T eff
j variable

motor torque constant Kt 0.6

the damping coefficient β 0.4

deformation torque of the gearbox Tdef variable

inertia of the input axis Im 0.0011

inertia of the output system Ison 400

joint angle of the output axis ǫ variable

motor current ic variable

spring constant c [11.7× 104, 14.3× 104]

Table 5.1: The nominal values of the parameters in the linear model of one joint
of the SRM.

duction, at present the available hardware imposes a severe restriction for the
real-life applicability of all robust approaches to MPC due to the underlying op-
timization problem that needs to be solved at each iteration.

The example considered in this section is the linear model of one joint of
a real-life space robot manipulator (SRM) system, introduced in Section 3.6 on
page 86. The state-space model of the system is given by

ẋ(t) =







0 1 0 0
0 0 c

N2Im
0

0 0 0 1

0 − β

Ison
− c

N2Im
− c

Ison
− β

Ison







x(t) +







0
Kt

NIm

0
− Kt

NIm







u(t)

y(t) =

[
1 0 1 0
0 N 0 0

]

x(t) + Ryξy(t)

z(t) =
[

0 N 0 0
]
x(t) + Rzξz(t)

(5.28)

This model is discretized with sampling period Ts = 0.1, [sec]. The system pa-
rameters are given in Table 5.1.

The following choice of the iPC parameters is made: N1 = 1, N2 = 8, NU = 7,
and W = 103. It was also selected

Q = 10−3I4, Ry = 10−3I2, Rz = 10−3, P0|−1 = I4.

In addition, the parameters c (the spring constant) and N (the gearbox ratio)
are considered as uncertain - the true value of these parameters are only known
to lie in intervals of respectively 10% and 13% around their nominal values.

As a reference rk a low-pass filtered step signal from 0 to 1 at time instant
k = 0, and from 1 to -1 at time instant k = 30 is selected. The low-pass filter that
was used is as follows

Wr(z) =
0.0902z + 0.0646

z2 − 1.2131z + 0.3679
. (5.29)



5.5 A Case Study 141

0 1 2 3 4 5 6
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5
Reference signal and system output

time, sec

Jo
in

t a
ng

ul
ar

 v
el

oc
ity

 [r
ad

/s
ec

]

reference signal
output with robust MPC
output with nominal MPC

Figure 5.1: Reference trajectory, and the controlled output zk for the system with
the newly proposed robust iPC controller.

A simulation was made in which the true values for the uncertain parameters
are selected as ctrue = 14.3 × 104 and Ntrue = −294.478. The simulation was
performed with two controllers. The first controller is the newly proposed robust
iPC controller. The second controller does not take the uncertainty into account;
it consists of an interconnection with a Kalman filter and a standard receding
horizon MPC both designed based on the assumption that the true values of the
two uncertain parameters are c̃ = 13.585 × 104 and Ñ = −245.3549, for which
values the optimization problem (5.8) is solved at each iteration.

Figure 5.1 presents the results from the simulation. The figure depicts the
reference trajectory and the controlled output zk for the system with the two
controllers. It can be observed that the newly proposed controller achieves sta-
bility and reference trajectory tracking, while the controller that does not take
the uncertainty into consideration results in an unstable closed-loop system.

Figures 5.2, 5.3 and 5.4 depict the first output of the system and its measure-
ment, the states and their estimates, and the control action uk, that result from
the simulation with the newly proposed robust iPC controller.

Comparison to other methods

Two other output-feedback methods were tried on this example, the BMI method
to passive FTC (Chapter 3) and the probabilistic LPV design method to active
FTC (Section 4.3 of Chapter 4). Both methods were unable to find a stabiliz-
ing controller. The BMI method failed at the second step of the initial con-
troller computation (see Section 3.4.2). The probabilistic LPV method was used
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Figure 5.2: The first output of the system with its corrupted by noise measure-
ment.
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Figure 5.3: The system states and their estimates.

in search for an LPV controller with matrices that are affine in the parameters c
and N , i.e. g1 = c and g2 = N in (4.37). Different attempts were made to com-
pute a controller achieving closed-loopH∞-norm of up to 106, but these were all
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Figure 5.4: The control action generated by the iPC controller.

unsuccessful. It needs to be pointed out here that this output-feedback LPV de-
sign problem has 92 optimization variables so that it requires a serious amount
of computations. For comparison, the MPC method from this chapter has only
15 optimization variables (8 for the states in two subsequent time instances, and
7 for the control action during the control horizon Nu = 7).

5.6 Conclusion

In this chapter a new approach to robust active FTC was presented based on
MPC control that does not impose the assumption that the system state is mea-
sured or known. The method is based on a combination of a finite-time Kalman
filter and a finite horizon MPC into one robust least-squares optimization prob-
lem, in which the vector of unknowns consists of the system states and the con-
trol action over the selected control horizon. The chapter considers a very gen-
eral class of uncertainties – the only assumption imposed is that the system
state-space matrices remain bounded over all uncertainties. The optimization
problem is solved in the probabilistic framework provided that the state covari-
ance matrix is given. Additionally, two methods for finding a covariance matrix
that is compatible with all values of the uncertainty were presented. The first
one aims at minimization of the trace of the covariance matrix and is compu-
tationally more involving, while the second method is more conservative but
much faster. The complete MPC approach has been tested on a case study with
a model of one joint of a real-life space robotic manipulator.
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6
Brushless DC Motor
Experimental Setup

In this chapter an experimental setup, consisting of a brushless DC motor
(BDCM), is described for demonstrating the capabilities of the probabilistic LPV
approach to robust active FTC, developed in Section 4.3 of Chapter 4. To make
this active FTC method applicable in real-life, it is extended with a simple fault
detection. In this FDD scheme we restrict to estimating the motor parameters
and postulating their uncertainty ranges for the sole purpose of demonstrating
that the robust active FTC method of Section 4.3 can deal with time-varying fault
estimates including the uncertainty ranges of the estimated quantities.
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6.1 Introduction

Electrical machines form an important part of the nowadays more and more
complex, safe-critical control systems. In such systems simple faults can easily
develop into catastrophic failures of important sub-systems leading to unpre-
dictable consequences. Such failures can often be avoided by timely reconfigu-
ration of the control system after a fault has been detected and diagnosed.

In the literature, two main streams of research in this area can be distin-
guished: the field of fault detection and diagnosis (Gertler 1998; Chen and Patton
1999), and the one of controller reconfiguration (Astrom et al. 2001; Zhang and
Jiang 2003; Patton 1997; Blanke et al. 1997). However, in the field of FDD most
of the approaches consider open-loop operation, and in the field of CR the ma-
jority of the methods assume perfect estimation of the faults. As a result, the
integration of these approaches still remains a challenging problem with both
theoretical and practical relevance.

In this chapter an approach to the design of fault-tolerant systems is pro-
posed that consists of two interacting parts, one having the task to detect faults
and estimate the parameters of the system (FDD scheme), and the other imple-
menting a CR strategy using the information from the FDD scheme and account-
ing for uncertainty in this information. The FDD part is based on an RLS scheme
with adaptive forgetting factor for on-line motor parameter estimation. Appro-
priately adapting the forgetting factor of the algorithm makes it possible to track
abrupt changes in the parameters while at the same time remaining less sensi-
tive to noise during periods of little or no changes in the parameter estimates. In
order to take into consideration the closed-loop operation of the system, the RLS
scheme is used to estimate only the parameters of the closed-loop system, from
which the real open-loop motor parameters are computed. In addition to that,
a CUSUM test (Basseville and Nikiforov 1993) is used to detect changes in the
mean values of the open-loop parameter estimates and to trigger fault detection
flags, which in turn inform the CR scheme that the estimates might be imprecise.
We note that this FDD scheme is only designed for the purpose of demonstrating
the on-line capabilities of the robust active FTC method of Section 4.3.

The CR scheme implements the robust active FTC method from Section 4.3.4
of Chapter 4 that is applicable to systems with sensor, actuator and component
faults in the presence of model and FDD uncertainty. The estimates of the faults
in the system, obtained from the FDD scheme, are also considered uncertain,
i.e. are assumed to lie inside some uncertainty intervals with given (but possibly
time-varying) sizes. The robust active FTC is scheduled by both the estimates
of the faults and the sizes of the corresponding uncertainty intervals. The com-
plete FDD&CR scheme is successfully tested on an experimental setup with a
brushless DC motor (BDCM).

Some existing works focused on the problem of FDD and CR of BDCM’s are
Moseler and Isermann (2000); Liu (1996); Bolognani et al. (2000). In Moseler and
Isermann (2000) a discrete square-root implementation of the RLS algorithm
is used to directly estimate some of the physical parameters of a continuous-
time BDCM model. In Liu (1996) the authors propose an algorithm to FDD in
BDCM based on combined parameter estimation and multi-layer perception
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Figure 6.1: Schematic representation of the complete BDCM experimental
setup.

neural network. In Bolognani et al. (2000) fault accommodation strategies are
discussed for some inverter faults like open or short circuit of one power devise.

The chapter is organized as follows. In Section 6.2 the experimental setup is
described and a model of a BDCM is given. The problem is next formulated in
Section 6.3, where also the requirements for the FDD and the CR schemes are
stated. In Section 6.4 the proposed algorithms are developed, which are sub-
sequently tested in Section 6.5 on the experimental setup. The chapter is con-
cluded with some final remarks in Section 6.6.

6.2 Model of a Brushless DC Motor

A brushless DC motor experimental setup has been recently developed in the
Delft Center for Systems and Control group at the Delft University of Technology
for the purpose of testing and demonstrating the performances of different FDD
and CR approaches. The setup consists of a MAXON 3-phase BDCM (type EC-
23), a MAXON 1-Q-EC Amplifier DEC 50-5, an Encoder HEDL 55, a gearbox with
ratio NGB = 1/4.8, and a DC motor acting as a load (see Figures 6.1 and 6.2). The
BDCM has a permanent-magnet rotor, and the three stator windings are imple-
mented in such a way that a trapezoidal back EMF is obtained (see Figure 6.3).
Rectangular stator currents are needed to produce a static electric torque. The
rotor position is detected by means of three Hall sensors, mounted at 120o, and
the position is used to determine the switching sequence of the six transistors in
the Amplifier (see Figure 6.2). The Amplifier implements open-loop control of
the motor by adjusting the amplitude of the rectangular stator currents propor-
tionally to the applied reference voltage Vref . For an overview of the literature
on analysis and modelling of brushless DC motors the reader is referred to Pillay
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and Krishnan (1989); Lee and Efsani (2003) and the references therein.

The goal is to control the angular velocity of ω after the gearbox, both in fault-
free and in faulty situations. The experimental setup works under Real-Time
Linux 2.4.4-rtl operating system running on a ASUS L3500 computer with a Pen-
tium IV/2.4 GHz processor. The developed software has the tasks to control the
setup and to enable the user to monitor and change some of the variables (e.g.
the controller parameters) of the algorithm. The later is achieved via a so-called
Remote Data Access (RDA) interface that makes it possible to monitor the pro-
cess via mathematical software packages like MATLAB r (see Figure 6.1). All al-
gorithms presented in the chapter were implemented in C.

As depicted in Figure 6.1, additional hardware has been developed for the
purposes of introducing faults in the system. The additional hardware makes it
possible to introduce both coil faults and faults in the encoder. The coil faults
that can be introduced consist of increasing the resistance of one coil by 1Ω, 3Ω
or 5Ω by means of including resistors in the loop, and broken transistor in the
Amplifier (see Figure 6.2). The last fault is made by connecting a diode to one
coil that simulates the effect of a broken (not conducting) transistor. The fault in
the encoder that can be introduced represent a partial 50% sensor fault (this will
be explained in more detail in Section 6.4.1).

For the purposes of deriving a dynamic model of the BDCM the assumption
is imposed that the power semiconductor devices in the inverter are ideal. The
inductances in the electrical part of the motor are also neglected. In the fault-
free case it is assumed also that the resistances of the three phases are the same,
i.e. Ra = Rb = Rc = R. Under these simplifying assumptions, the electrical part
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of the BDCM can be represented as (Pillay and Krishnan 1989)




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

 =


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
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

+





ea

eb

ec



 , (6.1)

where the physical meanings of the parameters and signals in the model, to-
gether with their dimensions, are summarized in Table 6.1.

The electromagnetic torque is given by

Te =
eaia + ebib + ecic

ωr
, (6.2)

where ωr is the angular velocity of the rotor, and where the back EMF’s ea, eb, ec

of the three phases have trapezoidal shape as shown in Figure 6.3 with amplitude
(Lee and Efsani 2003)

E = kEωr. (6.3)

Therefore, the electromagnetic torque is independent on the rotor position and
can be written in the form

Te = 2kEImax = kT Imax. (6.4)

The equation of motion of the motor is given by

Jω̇r = Te − Tload − Tlosses. (6.5)

The losses result from Coulomb and viscous friction, so that the following
model for Tlosses can be used (Moseler and Isermann 2000)

Tlosses = ccsign(ωr)
︸ ︷︷ ︸

Coulomb

+ cvωr
︸︷︷︸

viscous

. (6.6)
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The block Current Controller & Amplifier in Figure 6.2 implements open-loop
control of the motor. Its input is a reference input voltage Vref from which the
desired magnitude of the stator currents Imax is computed (Figure 6.3). Then by
using either Hysteresis control or PWM control (Pillay and Krishnan 1989), the
transistors are switched in such a way that the real stator currents have (approx-
imately) a rectangular shape with magnitude Imax. Thus, the resulting equiv-
alent supply voltage at the phases of the motor becomes VDu(t), where u(t) =

Vref

max(Vref ) ∈ [0, 1] is a modulating signal. Assume now, without loss of generality,

that the rotor position is in the interval [π
6 , π

2 ] rad (see Figure 6.3), so that coils “a”
and “b” are conducting with

va = VDu(t), ia = Imax, ea = E
vb = 0, ib = −Imax, eb = −E.

Then, using equations (6.1) and (6.3), it can be written

VDu(t) = va − vb = 2RImax + 2kEωr,

so that

Imax = −
kE

R
ωr +

VD

2R
u(t). (6.7)

Combining equations (6.4)-(6.7), the following continuous-time model of the
dynamics of the BDCM is derived

ω̇(t) = −

(
kEkT

RJ
+

cv

J

)

ω(t) +
KT VDNGB

2RJ
u(t)−

TLNGB

J
, (6.8)

where ω = NGBωr is the angular velocity after the gearbox, and where TL [N.m]
as torque resulting from load and Coulomb friction. ω is calculated by using
the reading from an encoder that measures the position of the rotor. The setup
works at a sampling time of Ts = 0.01 [sec], and the discrete-time equivalent to
model (6.8) is

ωk+1 = anomωk + bnomuk + bnom
off . (6.9)

where (assuming zero order hold discretization)

anom = exp
−
(

kEkT
RJ

+ cv
J

)

Ts ,

bnom =

(

exp
−
(

kEkT
RJ

+ cv
J

)

Ts −1

)
KT VDNGB

2kEkT + 2cvR
,

bnom
off =

(

1− exp
−
(

kEkT
RJ

+ cv
J

)

Ts

)
TLNGBR

kEkT + cvR
.

(6.10)

When sensor, actuator and/or component faults occur in the system, the
nominal model changes to the following faulty model

ωk+1 = afωk + bfuk + bf,off , (6.11)

ωM
k = σωk, (6.12)

where the faulty scalars af , bf , and boff result from parameter and actuator faults,
and where σ ∈ (0, 1] represents sensor fault (i.e. fault in the encoder). After the
occurrence of a sensor fault the angular velocity ωk differs from the measured
value ωM

k . The goal in the case of an encoder faults is, of course, to control the
true velocity ωk and not its faulty measurement ωM

k .
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Parameter: Symbol: Dimension:

va, vb, vc voltages at the three phases V
ia, ib, ic phase currents A
ea, eb, ec back EMF of the three phases V
Ra, Rb, Rc stator resistances Ω
ωr angular velocity of the rotor rad/sec
ω angular velocity after the gearbox rad/sec
ωref angular velocity reference rad/sec
NGB gearbox ratio −
J inertia of the rotor kg.m2

VD supply voltage V
Vref reference voltage V
Te electromechanical torque N.m
Tload load torque N.m
Tlosses torque due to friction N.m
kE back EMF constant V/(rad/sec)
kT torque constant Nm
cc Coulomb friction constant N.m
cv viscous friction constant N.m/(rad/sec)

Table 6.1: Parameters and signals used in the model of the BDCM.

6.3 Problem Formulation

This chapter aims at the development of an algorithm that can achieve both ro-
bust stability and reference trajectory tracking in the presence of faults, provided
that the faulty system remains controllable/observable. To this end we will de-
velop two schemes, one having the task to detect and diagnose the faults in the
system, and another to reconfigure the controller on the basis of the obtained
fault estimates and their uncertainty intervals. The requirements for these two
schemes are discussed in the following two subsections.

6.3.1 Fault Detection and Diagnosis Problem

The purpose of the FDD algorithm is on the basis of input-output measurements
{ωM

k , uk} to produce estimates of the motor parameters that can be used for on-
line controller reconfiguration in closed-loop. To this end, a parameter estima-
tion algorithm is needed that makes a tradeoff between accuracy and tracking
speed, and at the same time deals with closed-loop data and control action sat-
uration. A recursive least squares algorithm (RLS) that is capable of dealing with
these demands is briefly summarized below.

Tracking changes in the parameters to be estimated is achieved by introduc-
ing a forgetting factor 0 < λ < 1 (typically 0.95 < λ < 1) in the RLS algorithm
(also known as the exponentially weighted RLS). However, using a forgetting
factor makes the estimates much more sensitive to noise. Therefore in the al-
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gorithm proposed here an adaptive forgetting factor is used, so that λ = λmin

whenever the current parameter estimates do not “explain” the data accurately
enough (i.e. whenever an estimation error signal, to be defined later on, is large),
and λ = λmax otherwise. Other forgetting variants, e.g. (Kulhavy and Kraus
1996; So and Leung 2001; Toplis and Pasupathy 1988; Park and Jun 1992), can
also be used; in this chapter, however, we perform experiments with this simpli-
fied scheme that proves to be sufficient for our purposes.

The operation in closed-loop is made possible by using a-priori knowledge
about the structure and the parameters of the controller. The idea is to estimate
the parameters of the closed-loop system, from which one can then compute the
open-loop parameters. The controller parameters, however, need to be modified
appropriately in order to take the saturation effect into consideration. Sections
6.4.1 and 6.4.1 deal with these issues.

Finally, a CUSUM test (Basseville and Nikiforov 1993) will be used to detect
changes in the mean of the parameter estimates, which will trigger fault detec-
tion flags. When a detection flag is raised, the fault estimates can initially be
expected to be rather inaccurate until they converge to their new values. There-
fore, immediately after a fault alarm the uncertainty in the estimates should be
abruptly increased, and then gradually decreased as the estimates converge to
their new values. This is discussed in section 6.4.1.

As mentioned earlier, besides faults in the a and b parameters of the system,
sensor faults (faults in the encoder) are also considered. The same RLS scheme
is, unfortunately, not applicable to the detection of this fault in combination
with an actuator fault. The reason for that is that in SISO systems multiplica-
tive (scaling) faults on the input and output result in the same transfer function,
and therefore in the same input-output behavior (Verdult, Kanev, Breeman, and
Verhaegen 2003). In order to make it possible to diagnose also this sensor faults
we will make use of an additional measurement, namely the signal of one of the
three Hall sensors in the motor. This is explained in more detail in section 6.4.1.

6.3.2 Robust Active Controller Reconfiguration Problem

The goal here will be to demonstrate the LPV approach to robust active FTC from
Section 4.3. To this end we would like to design an LPV controller that

(i) provides guaranteed robust closed-loop stability and performance with re-
spect to uncertainties in the estimates of the motor parameters provided
by the FDD scheme,

(ii) is scheduled both by the estimates of the motor parameters as well as by the
sizes of their uncertainty intervals,

(iii) achieves reference trajectory tracking.

As the third demand cannot directly be addressed by the method of Section
4.3, this is achieved here by introducing integral action in the control signal.
To this end first an integrator is connected to the measured angular velocity of
the motor and the LPV design is subsequently performed for the resulting aug-
mented system. Once the LPV controller is designed, the integrator is included
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into it resulting into an LPV controller with integrating action. More details
about this will follow in Section 6.4.2. Note that introducing integral action in
the feedback is a standard strategy for achieving (piecewise) constant trajectory
tracking (see, for instance, Goodwin et al. (2001)).

The next section discusses the design of the FDD and FTC schemes.

6.4 Combined FDD and robust active FTC

6.4.1 Algorithm for FDD

As discussed in Section 6.3.1, the FDD scheme is required to be capable to track
abrupt changes in the parameters of the system on the one hand, and not to be
too sensitive to process noise on the other. In addition, it needs to deal with
control action saturation and closed-loop operation. To achieve this an algo-
rithm for FDD is presented in this section that consists of a set of subroutines
dealing with these issues. This scheme is based on a exponentially weighted RLS
algorithm with adaptive forgetting factor.

Control action saturation

As mentioned in Section 6.2, the control action is saturated below 0 and above
1. As a result, the control action computed using (6.47) may differ from the real
control signal applied to the motor at time instant k, which leads to poor param-
eter estimates.

In order to account for the control action saturation (6.48) in the RLS scheme
discussed below we define, for i = 1, 2,

F̄i(k) =







Fi(k)

uR
k

, uR
k > 1

Fi(k), 0 ≤ uR
k ≤ 1

0, uR
k < 0,

so that

SAT (uR
k ) =

[
F̄1(k) F̄2(k)

]
[

ω̂k

xI
k

]

.

In this way the effect of the saturation is easily accounted for in the controller
parameters, and the signals ω̂k and xI

k remain unaltered.

Dealing with closed-loop data

Before developing the RLS scheme the BDCM model in equation (6.51) needs
first to be equivalently rewritten in the regression form

ω̂k+1 = ξT
k θk,
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where θk = [a, b, boff ]T represents the parameters that have to be estimated,
and ξk = [ω̂k, uk, 1] is the vector of regressors. However, due to the closed-loop

configuration, using this form may lead to incorrect estimates θ̂k in the case that

the control action is dependent on the current estimates θ̂k (as is the case with
the robust FTC developed later), which makes ξk a function of θk. To deal with
this problem we will directly estimate the parameters of the closed-loop system,
from which the open-loop parameters can be computed.

Applying the saturated control uk to the BDCM (6.51) results in the closed-
loop system

[
ω̂k+1

xI
k+1

]

=

[
a + bF̄1(k) bF̄2(k)

Ts 1

] [
ω̂k

xI
k

]

−

[
0
Ts

]

ωref
k +

[
boff

0

]

. (6.13)

Noting that the parameters that need to be estimated appear only in the first row
in (6.13), and that the state xI

k of the integrator is known, we can write

ω̂k+1 = (ξcl
k )T θcl

k , (6.14)

with

ξcl
k =





ω̂k

F̄2(k)xI
k

1



 , θcl
k =





a + bF̄1(k)
b

boff



 ,

so that now ξcl
k is independent on θcl

k .
Algorithm 6.1 can then be used for estimating the parameters θcl

k of the closed-
loop system using the model (6.14).

Algorithm 6.1 makes use of an exponentially weighted RLS algorithm where
the forgetting factor λk at each time instant may take one of two values, λmin or
λmax. In equation (6.27) it is checked whether the estimates are accurate enough,
and if so λk is taken equal to λmax. In this way more data from the past will be

used in forming the estimate θ̂cl
k , which will become less sensitive to noise. On

the other hand, if the estimates do not explain the data accurately, λk is set to
λmin which makes the algorithm alert to parameter changes. A reasonable way
to check whether the estimates are accurate or not is by looking at the estima-
tion error (6.26). Once the squared estimation error becomes higher than a pre-
defined threshold e2

max, λi is set to λmin for i = k, k + 1, . . . , k + tλ, where tλ is
a given integer that defines the duration time of λmin. In addition, a weighting
matrix W = WT > 0 is used to put additional weighting on the estimated pa-

rameters θ̂cl
k .

Algorithm 6.1 produces at each time instant estimate of the closed-loop pa-

rameters θ̂cl
k (6.30), which are subsequently filtered in (6.31) for some 0 < α < 1.

This is done to smooth the estimates that, due to the forgetting factor, may be

peaky during some time intervals. Then the estimates θ̂k of the open-loop sys-

tem are produced in (6.35) from the filtered closed-loop estimates θ̂cl,f
k . The

open-loop parameter estimates obtained in this way can now be used for fault
detection and controller reconfiguration. In the next subsection it is explained
how a two-sided CUSUM test can be used to detect changes in the mean value

θmean
k of the parameter estimates θ̂k.
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Algorithm 6.1 (RLS with adaptive λk)

PARAMETERS: W = WT > 0, emax > 0, tλ > 0, 0 < λmin ≤ λmax ≤ 1,
0 < α < 1.

INITIALIZATION: k = 0, tend = 0, P0 = PT
0 > 0, xI

0 = 0, ξcl
0 = 0, AND

θ̂cl
0 = [anom, bnom, bnom

off ]T .

Step 1. SET k ← k + 1.

Step 2. GET NEW DATA ω̂k , ωref
k , F1(k), F2(k), AND COMPUTE

ek = ω̂k − (ξcl
k−1)

T θ̂cl
k−1, (6.26)

λk =

{
λmin, k > tend AND e2

k > e2
max,

λmax, OTHERWISE.
(6.27)

IF (λk − λk−1) = (λmax − λmin) THEN SET tend ← k + tλ.(6.28)

γk−1 =
Pk−1Wξcl

k−1

(ξcl
k−1)

T WPk−1Wξcl
k−1 + λk

(6.29)

θ̂cl
k = θ̂cl

k−1 + Wγk−1ek, (6.30)

θ̂cl,f
k = αθ̂cl,f

k−1 + (1− α)θ̂cl
k−1, (6.31)

Pk =
1

λk
(1− γk−1(ξ

cl
k−1)

T W )Pk−1, (6.32)

uR
k = F1(k)ω̂k + F2(k)xI

k, (6.33)

F̄i(k) =







Fi(k)

uR
k

, uR
k > 1

Fi(k), 0 ≤ uR
k ≤ 1

0, uR
k < 0,

(6.34)

θ̂k =





1 −F̄1(k) 0
0 1 0
0 0 1



 θ̂cl,f
k . (6.35)

ξcl
k =

[
ω̂k, F̄2(k)xI

k, 1
]T

. (6.36)

Step 3. GO TO Step 1.

Fault detection via CUSUM test

Abrupt faults in the BDCM result in abrupt changes in the motor parameters.
These can be detected by means of looking for changes in the mean values of the

estimated parameters θ̂k, for which purpose a two-sided CUSUM test (Basseville
and Nikiforov 1993) can be used. Both increases and decreases in the mean can
be detected by the two-sided CUSUM test that is summarized in Algorithm 6.2.
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Algorithm 6.2 (two-sided CUSUM test)

PARAMETERS: Wθ > 0, νU , νD , AND h.

INITIALIZATION: k = 0, θmean
0 = θ̂0, θU

0 = θD
0 = 0.

Step 1. SET k ← k + 1.

Step 2. GET θ̂k FROM ALGORITHM 6.1 AND COMPUTE

θmean
k =

(Wθ − 1)θmean
k−1 + θ̂k

Wθ
(6.41)

θU
k =

[

θU
k−1 + θ̂k − θmean

k − νU
]+

(6.42)

θD
k =

[

θD
k−1 − θ̂k + θmean

k − νD
]+

(6.43)

IF
(∥
∥θU

k

∥
∥

2
+
∥
∥θD

k

∥
∥

2
≥ h

)
AND

(∥
∥θU

k−1

∥
∥

2
+
∥
∥θD

k−1

∥
∥

2
< h

)

THEN FAULT IS DETECTED AT tF = k. (6.44)

Step 3. GO TO Step 1.

Note that a proper selection of the threshold h in the CUSUM algorithm would,

in general, be dictated by the covariance matrix of the parameter estimates θ̂k as
well as by the magnitude of the jump (Basseville and Nikiforov 1993; Blanke et al.
2003). It is usually suggested to choose h such as to achieve a certain tradeoff
between minimal detection delay and maximal time between false alarms: in-
creasing h increases the detection delay but reduces the chance for false alarms.
In the experimental results presented in this Chapter, however, the parameter h
has been experimentally selected.

Whenever a fault is detected by the CUSUM test a fault detection flag is raised
to inform the reconfiguration scheme that the fault estimates might be imprecise
due to the absence of enough input-output measurement data immediately af-
ter the fault occurrence/detection. The idea pursued in this chapter is, based on
a-priori information, to appropriately select an upper δmax and a lower bound
δmin on the possible size of the uncertainty in the fault estimates. The size of the
uncertainty at each time instant is then computed as a function of the current
time instant and the last detection of a fault (see Figure 6.4). The uncertainty
size is in this way increased to its maximum δmax after the detection of a fault,
and subsequently gradually decreased as time elapses. To achieve this effect, the
following function can be used

δ(t) = δmin +
tA(δmax − δmin)

tA + 9(t− tF )
, (6.45)

where t is the current time instant, tF is the time instant of the last fault detec-
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Figure 6.4: The size of the uncertainty in the fault estimates is increased after
the detection of a fault by the CUSUM test, and is then gradually decreased with
time.

tion, and tA is the time needed for δ(t) to decrease from its maximum value δmax

to δmin + 0.1(δmax − δmin).

Simulation and Detection of Faults in the Encoder

The encoder that is used in the experimental setup is MAXON HEDL 55 and gen-
erates 500 pulses per rotation which are used to determine the position of the
rotor (see Figure 6.5). It is a so-called incremental encoder as it outputs a num-
ber that is increased by 1 each time a pulse has been generated. The value of
this number at time instant k is denoted by nk. On the basis of this reading the
angular velocity of the motor after the gearbox is computed as

ωk =
NGB(nk − nk−1)π

250Ts
,

where Ts is the sampling time. Possible fault in the encoder is the obstruction
of a number holes so that less than the nominal 500 pulses per rotation are ob-
tained. The same effect results also from slip in the link between the rotor and
the encoder. Such fault is multiplicative by nature and can be analytically repre-
sented as

ωM
k = σωk = σ

NGB(nk − nk−1)π

250Ts

where 0 < σ < 1 represents the gain of the multiplicative sensor fault.
This fault, however, cannot be estimated directly by making use of the pa-

rameter estimation algorithm presented above. This is due to the fact that in
a SISO system one cannot differentiate between multiplicative sensor fault and
multiplicative actuator fault only on the bases of the input and the output signals
(see for instance (Verdult et al. 2003)). Indeed, multiplication of the output with
σ results in the same input-output behavior of the system as multiplying the in-
put with σ. For this reason in order to be able to detect also sensor faults we will
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Figure 6.5: The Hall sensors in the BDCM and the encoder.

make use of an additional measurement. The idea exploited here is to estimate
the scaling factor σ by estimating the number of pulses we obtain from the en-
coder per one rotation. This can be achieved by measuring the signal from one
of the three Hall sensors mounted on the motor (see Figure 6.5), and counting
the number of pulses between two fronts of the Hall sensor signal. On the basis
of this we can produce an estimate σ̂ of the scaling σ. Due to some synchro-
nization issues it turns out the this estimate may deviate a bit from the real fault
magnitude σ, which deviation we model as uncertainty (see equation (6.50)).

6.4.2 Algorithm for Controller Reconfiguration

Aiming to achieve demands (i)-(iii) for the controller reconfiguration posed at
the beginning of Section (6.3.2) on page 152, a state-feedback controller with
integral action of the form

unom
k =

[
F1(k) F2(k)

]
[

ωk

xI
k

]

,

xI
k = xI

k−1 + Ts(ωk−1 − ωref
k−1),

(6.46)

will be used. In (6.46) ωref
k is the reference velocity that needs to be followed.

However, while this structure is appropriate in the case of no sensor fault – when-
ever a fault in the encoder is present ωk is not measured directly. Instead, only
the faulty measurement ωM

k is available together with an estimate of the sensor
fault magnitude σ̂. In the case of a partial sensor fault (σ̂ > 0) the following sub-
stitute for (6.46) is more appropriate

uR
k =

[
F1(k) F2(k)

]

[
ωM

k

σ̂
xI

k

]

,

xI
k = xI

k−1 + Ts

(
ωM

k−1

σ̂ − ωref
k−1

)

.

(6.47)

Note, that a total sensor fault (σ = 0) results in an unobservable system, a sit-
uation that falls outside this chapter. Note also, that due to the saturation, the
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control action that is actually applied is given by

uk = SAT (uR
k ) =







1, uR
k > 1

uR
k , 0 ≤ uR

k ≤ 1
0, uR

k < 0.
(6.48)

Due to the fact that we use the reconstructed velocity, defined as

ω̂k =
ωM

k

σ̂
, (6.49)

instead of the true velocity in the control law (6.47), it is more convenient to
rewrite the model for ω̂k instead of ωk. To this end we note that from equations
(6.11), (6.12), (6.50), and (6.49) we can write

ω̂k+1 =
ωM

k+1

σ̂
= (1 + γf,σ∆σ)ωk+1

= (1 + γf,σ∆σ)(afωk + bfuk + bf,off )

= af
ωM

k

σ̂
+ bf (1 + γf,σ∆σ)uk + bf,off (1 + γf,σ∆σ)

= af ω̂k + bf (1 + γf,σ∆σ)uk + bf,off (1 + γf,σ∆σ).

For simplicity of notation, the last equation will be written as

ω̂k+1 = aω̂k + buk + boff .

It is assumed here that estimates (â, b̂, b̂off , σ̂) of (a, b, boff , σ) are provided by the
FDD scheme together with the sizes (γf,a, γf,b, γf,off , δσ) of their corresponding
uncertainty intervals, so that

a = â(1 + γf,a∆a), with |∆a| ≤ 1,

b = b̂(1 + γf,b∆b), with |∆b| ≤ 1,

boff = b̂off (1 + γf,off∆off ), with |∆off | ≤ 1,
σ = σ̂(1 + γf,σ∆σ), with |∆σ| ≤ 1.

(6.50)

It needs to be pointed out, however, that in the current implementation the un-
certainty intervals (γf,a, γf,b, γf,off , γf,σ) are not provided by the current imple-
mentation of the FDD scheme. Instead, they are artificially formed using some
a-priori knowledge about the tracking capabilities of the developed RLS scheme.
This is further discussed in section 6.4.1.

Thus, as depicted in Figure 6.6, the design of the controller with integral ac-
tion (6.47) can be achieved by means of state-feedback design for the following
augmented system,

[
ω̂k+1

xI
k+1

]

=

[
a 0
Ts 1

] [
ω̂k

xI
k

]

+

[
b
0

]

uk +

[
0 boff

−Ts 0

] [

ωref
k

1

]

(6.51)

In addition, for controller design purposes we define the controlled outputs

zk =

[
z1(k)
z2(k)

]

=

[
Wex

I
k

Wuuk

]

, (6.52)
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where We,Wu > 0 are scaling factors. As discussed later on in more detail, the
goal is to achieve some desired (weighted) H∞-norm of the closed-loop system
with output zk. By appropriately selecting the input weighting Wu one can make
sure that the control action does not become too active and remains inside the
saturation bounds, so that the design can be carried out neglecting the satura-
tion (see equations (6.51) and (6.48)).

The system described by equations (6.51) and (6.52) is of the form (4.34) on
page 111 with matrices

A∆(f) =

[
a(â,∆a) 0

Ts 1

]

, B∆
u (f) =

[

b(b̂,∆b,∆σ)
0

]

,

B∆
ξ (f) =

[

0 boff (b̂off ,∆off )
−Ts 0

]

,

C∆
z (f) =

[
0 We

0 0

]

, D∆
zu(f) =

[
0

Wu

]

, D∆
zξ(f) =

[
0 0
0 0

]

,

where the matrices a, b, and boff are defined in equation (6.50). The remaining
matrices C∆

y (f), D∆
yu(f), and C∆

yξ(f) are of no importance in the sequel since
only the state-feedback case is considered here.

The fault signal f can be taken of the form

f =





a
b

boff





so that its estimate f̂ =
[

â b̂ b̂off

]
provided by the FDD part of the algorithm

is such that in view of (6.50) the following holds

f = (I + diag(γf (k))∆̂)f̂ ,

where the FDD uncertainty is denoted as

∆̂
.
= diag(∆a,∆b,∆off ),
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and its “size” as
γf

.
= [γf,a, γf,b, γf,off ]T .

Note that the sensor fault signal σ is not included in the fault vector f . The reason
for that the estimate σ̂ will not be a scheduling parameter for the LPV controller
designed later on; instead, σ̂ is used to compute the reconstructed velocity ω̂k,
i.e. the first state of the considered system (6.51). Note that in the final imple-
mentation of the controller, as depicted on Figure 6.6, it will depend directly on
σ̂ although the LPV controller itself does not depend on it.

In this way a state-feedback LPV controller is to be designed by solving the
optimization problem (4.39) on page 112 (or, equivalently, (4.39)) where the split-
ting of the controlled output zk in equation (4.36) on page 112 is defined for the
BDCM in equation 6.52. In this way the integrated tracking error xI

k can be min-
imized subject to a constraint on the control action uk that aims to reduce the
effect of the saturation on the closed-loop system.

In this way the results from Section 4.3 can directly be used for the design of
the LPV controller. The final FTC controller can then be implemented as shown
in Figure 6.6.

6.5 Experimental results

This section presents some results obtained on the BDCM experimental setup
explained in Section 6.2.

Nominal model and fault scenario

For the fault-free system a linear discrete-time state-space model has been iden-
tified from input/output data using the Subspace Model Identification technique
(Verhaegen 1994). This model has the form

ωk+1 = 0.9644ωk + 1.265uk − 0.0891, (6.53)

and is only used to initialize the parameter estimate procedure summarized in
Algorithm 6.1.

In the experiment presented here two hardware faults are introduced:

• increased resistance of one coil by 3Ω (coil fault) is introduced at time in-
stant t = 12.19, [sec].

• a 50% encoder fault is introduced at time instant t = 16.15, [sec].

Both faults remain active until the end of the experiment.
The effect of the encoder fault has been discussed in more detail in section

6.4.1. The effect of the coil fault can be seen as reduced input voltage VD dur-
ing 2/3 of each turn of the rotor, namely during the interval of time in which
the faulty coil is conducting. This, in turn, leads to a decreased angular veloc-
ity during these periods so that as a result fluctuations in the angular velocity of
the motor are observed. The amplitude of these fluctuations increases with the
increase of the resistance of the faulty coil. The frequency of the fluctuations is
proportional to the angular velocity of the rotor.
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Robust Active FTC

The goal here is to control the angular velocity in such a way that (both in the
fault-free and in the faulty case) it can track a piecewise-constant reference tra-
jectory with a settling time of less than 2 sec. To this end, integral control law
is implemented as described in Section 6.3.2, where the design of the controller
gains F1(k) and F2(k) is performed by making use of the probabilistic approach
proposed in Section 6.4.2. In order to meet the design specifications, in the op-
timization problem (4.40) on page 113 the controlled output zk is selected as in
equation (6.52) with We = 1 and Wu = 5.

After performing some initial experiments it became clear that the third mo-
tor parameter, boff , remains very small and does not undergo significant changes
after faults. Indeed, this parameter is related to the load on the motor which is
not affected by faults1. For that reason the LPV controller is made independent

on b̂off by selecting its matrices F1(k) and F2(k) (see equation (6.47) on page 158)
with the following structure

F1(f̂(k), γf (k)) = F1,0 + F1,1â(k) + F1,2b̂(k) + F1,3γf,a(k) + F1,4γf,4(k),

F2(f̂(k), γf (k)) = F2,0 + F2,1â(k) + F2,2b̂(k) + F2,3γf,a(k) + F2,4γf,4(k).

This is in the form (4.42) on page 114 where the functions gi(·) are selected to
be affinely dependent on the fault estimates (namely the estimates of the state-
space matrices a and b of the BDCM) and the size of the uncertainty of these
estimates.

Therefore, for the LPV design the fault signal f in the generalized faulty sys-
tem representation (4.34) is taken as

f =

[
a
b

]

,

and it is assumed that f ∈ F where

F =

{

f :

[
0.95
0.1

]

≤ f ≤

[
0.99
2.5

]}

.

These are realistic bounds since faults in the BDCM result on the one hand in
slower dynamics (a > anom), and on the other hands they cannot destabilize the
(open-loop) system (1 > a > anom). Additionally it can be seen from equation
(6.10) that b decreases when R increases. Faults resulting in b < 0.1 are consid-
ered as total actuator faults, i.e. the system becomes practically uncontrollable.
Again, such faults fall outside the scope of this chapter.

The parameter-varying FTC controller computed with the approach in Sec-
tion 4.3 is as follows

F1(k) = 0.1077− 0.1670â(k) + 0.0014b̂(k)− 0.6778γf,a(k)− 0.1089γf,b(k)

F2(k) = −0.0192− 0.2626â(k) + 0.0091b̂(k)− 2.4604γf,a(k)− 0.4145γf,b(k)

1We note here that if the load to the motor changes for some reason then the integrating action
will take care to compensate for it.
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Algorithm 6.1

P0 W emax tλ λmin λmax α
I3 diag[1, 1, 10−8] 2 100 0.98 0.9999 0.97

Algorithm 6.2 Uncertainty computation

Wθ νU νD h δmin δmax tA

50





1
0.2
10









1
0.2
10



 1

[
0.001
0.01

] [
0.01
0.1

]

100

Table 6.2: Parameters in the algorithms used in the experiment.

For the purposes of comparison, a nominal PI controller was designed that
achieves the control objective for the fault-free system. This PI controller has the
structure given in Equation (6.46) on page 158 with

FPI
1 = −0.0214, FPI

2 = −0.0223.

FDD algorithm

The implemented algorithm for FDD is explained in detail in Section 6.4.1. Table
6.2 shows the values of the parameters of the complete FDD algorithm that con-
sist of Algorithms 6.1 and 6.2 and the uncertainty size computation in equation
(6.45) on page 156.

Experimental results

The results from the experiment are summarized on Figures 6.7-6.8. Figure 6.7
depicts the reference trajectory (the dotted curve), angular velocity after the gear-
box with the PI controller (the dash-dotted curve) and with the robust active FTC
(the solid curve). It can be seen that both controllers achieve the performance
specifications in the fault-free case, i.e. up until time instant t = 12.19 [sec] when
the coil fault occurs. After this fault it can be seen that the nominal PI controller
no longer satisfies the specifications as it is not capable of tracking the reference
trajectory with a settling time of less than 2 sec. It should be noted, however,
that due to the integral action in the PI controller the tracking error would also
eventually go to zero, should the reference trajectory be left constant for a longer
period of time. On the other hand the closed-loop system with the FTC con-
troller satisfies the performance specifications after the coil fault.

It should be pointed out that after the occurrence of this first fault, the an-
gular velocity becomes rather fluctuating. As discussed at the beginning of this
section, this is not due to increased measurement noise as it looks, but as a result
of the coil fault.

At time instant t = 16.15 sec a second fault occurs, namely a partial 50% fault
in the encoder. After this fault the measured angular velocity ωM

k is two times
smaller than the real velocity that needs to be controlled ωk. Since the nominal
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Figure 6.7: Reference trajectory (dotted), angular velocity with nominal PI con-
troller (dash-dotted), and angular velocity with FTC (solid).

PI controller does not possess reconfiguration capabilities it tries to bring the
measured angular velocity ωM

k to the reference signal, trying to make in this way
the true velocity ωk two times higher. This, on its turn, is not possible as the
maximal velocity in the presence of the coil fault is around 20 rad/sec. As a result
the control action hits the saturation and brings the motor to its maximal speed.
In comparison, the FTC is capable to reconfigure so that the true angular velocity
ωk continues to track the reference signal satisfactorily.

Figure 6.8 depicts the parameter estimates obtained by the RLS scheme in
Algorithm 6.1. The parameter vector θ = [a, b, boff ]T consists of the motor pa-
rameters. After the occurrence of the coil fault at time instant t = 12.19 [sec] it

can be observed that the first two parameter estimates, i.e. â and b̂, converge to
their new values. The third parameter estimate is kept constant by making its
corresponding weight in the RLS algorithm very small (see Table 6.2). While this
is not very restricting (as the offset term is only slightly dependant on coil faults),
it makes the estimates of the other parameters to converge smoothly to their new
post-fault values. Note also that, as expected, the second fault (i.e. the encoder
fault) does not affect the parameter estimates. Its detection and diagnosis was
discussed in Section 6.4.1.

It should be pointed out that the CUSUM test detected the coil fault at time
instant t = 13.23 sec, thus with a detection delay of 1.04 sec. No false alarms
were observed. Once the fault was detected, the uncertainty in the parameter
estimates was increased to its assumed maximum value and then gradually de-
creased as explained in Section 6.4.1.
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Figure 6.8: BDCM parameter estimates.

6.6 Conclusions

In this chapter a combined fault detection, diagnosis and controller reconfigu-
ration approach was proposed for a brushless DC motor. The approach consists
of two interacting schemes, an FDD and a CR scheme. To make the intercon-
nection possible, the FDD scheme is developed to achieve fast fault detection
and diagnosis and takes into consideration important issues as closed-loop op-
eration and control action saturation. It is based on a modified weighted-RLS
algorithm with adaptive forgetting factor that makes it alert for abrupt param-
eter changes on the one hand, and not too sensitive to process noise on the
other. The CR scheme, on its turn, is designed to deal with time-varying un-
certainty in the fault estimates, provided by the FDD scheme. It is based on a
parameter-varying controller that is scheduled by both the fault estimates and
the sizes of their uncertainties. As the later cannot be directly estimated by the
FDD schemes, they are formed heuristically, leaving room for further improve-
ment of the algorithm. The complete approach was successfully tested on an
experimental setup consisting of a brushless DC motor.
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7
Multiple-Model Approach to
Fault-Tolerant Control

So far the attention was paid on linear systems with uncertainties, for which both
passive and active approaches to FTC have been developed. In this chapter an
attempt is made towards the active FTC design for nonlinear systems. The phi-
losophy used in the method of this chapter is to represent a nonlinear system or
a system with faults by means of a set of local linear models where each model
corresponds to a particular operating condition of the system. The interacting
multiple model estimator is utilized for reconstructing both the state of the non-
linear (faulty) system and the mode probabilities for the local models. Based
on this information, a standard cost function in predictive control is optimized
under the assumption that the mode probabilities remain constant in the fu-
ture. The method of this chapter does not consider model uncertainties which
remains a topic for future research. The algorithm is illustrated in two different
case studies – one with a linear model of one joint of a space robot manipulator,
subjected to faults, and one with a nonlinear model of the inverted pendulum
on a cart.

167
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7.1 Introduction

Modern control systems are becoming increasingly complex with more and more
demanding performance goals. These complex systems must have the capabil-
ity for fault accommodation in order to operate successfully over long periods of
time. Such systems require fault detection, isolation and controller reconfigura-
tion so as to maintain adequate levels of performance with one or more sensor,
actuator, and/or component faults, or a combination of these events. The con-
troller reconfiguration technique that is developed in this chapter, though ap-
plicable to a general nonlinear system, is very suitable for the control of systems
subject to faults, since such systems are (naturally) represented by a set of mod-
els (Athans et al. 1977; Maybeck and Stevens 1991; Griffin and Maybeck 1997;
Zhang and Li 1998).

When dealing with sensor, actuator and component faults, a hybrid dynamic
model can be used. The hybrid system is also known as jump linear system:
it is linear given the system mode; however it may jump from one such sys-
tem mode to another at a random time. Such systems can be used to model
situations where the system behavior undergoes abrupt changes, such as sys-
tem faults (Zhang and Li 1998). The hybrid dynamic model (Griffin and May-
beck 1997; Zhang and Li 1998) consists of a set of discrete-time linear models
and a switching logic, determining the switching between these models. The
switching between models in the hybrid systems is a consequence of factors,
such as faults in its sensors, actuators and components. Different methods for
the control of hybrid systems have been proposed in the literature. In (Zhang
and Jiang 1999b; Campo et al. 1996) an Interacting Multiple Model based control
was utilized, a neural adaptive controller is presented in (McDowell et al. 1997),
Multiple-Model Adaptive Control (MMAC) is also an important class of control
methods with application to the control of jump linear systems (Athans et al.
1977; Griffin and Maybeck 1997; Naredra and Balakrishnan 1997), an algorithm
based on the Generalized Pseudo-Bayessian method is given in (Watanabe and
Tzafestas 1989). The optimal control of hybrid systems have also been addressed
in the literature (Griffiths and Loparo 1995).

A similar model representation might also be used to represent a nonlinear
dynamic system when approximating it by a piecewise linear system (PWL sys-
tem). In the piecewise linear system description it is assumed that the state-
space X is divided into regions Xi. Linear dynamics are associated with each
such region of the state space. Thus, the PWL system is again described by a
set of local models. The reader, who is interested in PWL systems is referred to
(Johansson 1999; Johansson and Rantzer 1998; Rantzer and Johansson 1997). In
this chapter the hybrid systems and the piecewise linear systems will be treated
in a unified manner, as in (Athans et al. 1977; Fabri and Kadirkamanathan 1998b;
Johansson 1999; Fabri and Kadirkamanathan 1998a).

The switching logic of the hybrid dynamic system representation in this chap-
ter is determined by the Interacting Multiple Model (IMM) estimator, adopted
from e.g. (Zhang and Li 1998; Griffin and Maybeck 1997; Blom and Bar-Shalom
1988; Li 1996), and extended to the case of systems with offset in the state and
output. In this approach, the switching logic corresponds to a set of real num-
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bers that determine the convex combination of the models in the model set that
is valid at a particular time instant, i.e. the convex combination of the states of
the local models that represents the system state.

In the classical approach of gain scheduling using local models (Fabri and
Kadirkamanathan 1998a; Hunt and Johansen 1997) pre-designed controllers are
activated when a detection mechanism detects that one (and only one) model
from the model set is active at a particular time instant. When making use of this
approach in fault tolerant control, each fault condition should be represented by
a single model. Thus, the set of models will very quickly grow unboundedly as
a consequence of having to model every (partial or total) faulty condition. This
problem is avoided in this chapter by letting the state of the actual system be ap-
proximated by a convex combination of the states of the local models. In (Griffin
and Maybeck 1997) the authors propose a moving bank of filters to reduce the
number of active models and the computational burden, i.e. only the models in
close proximity to the model of the “real” system are activated.

In this chapter it is assumed that the nonlinear system is represented by a
convex combination of a set of linear discrete-time modelsM = {M1, . . . ,MN}.
This set will be called the model set. The decision about which convex combi-
nation of these models is in effect at the current moment of time is made by the
Interacting Multiple Model estimator. It runs a bank of Kalman filters in parallel,
each based on a particular local model from the model setM. It calculates the
probability of each mode to be in effect. The overall state estimate is then com-
puted as a convex combination of the state estimates obtained from the different
Kalman filters. A model of the system that is assumed to be currently in effect is
also constructed as a convex combination of the local models in the model set. A
bank of Generalized Predictive controllers (GPC) is designed, each correspond-
ing to one of these local models. The optimal GPC control law for the model that
is assumed to be in effect is calculated at each sample to minimize a standard
cost function. This optimal control is not a convex combination of the local GPC
control laws, optimized for each individual model in the model set.

In (Maybeck and Stevens 1991) the authors have applied a multiple model
adaptive control to a STOL F-15 aircraft. They combine a non-interacting MM al-
gorithm with a bank of LQG controllers, each designed for one particular model.
The overall control action is computed as a convex combination of the outputs
of the different controllers, i.e.

u(k) =

N∑

i=1

ui(x̂i(k))µi(k)

where u(k) is the overall control action, ui(x̂i(k)) is the output of the i-th LQG
controller (dependent on the state estimate of the i-th Kalman filter, x̂i(k)) and
µi(k) is the probability that model Mi is in effect at the moment of time k. How-
ever, although such a mixing of the controller outputs seems reasonable and in-
tuitive, it does not guarantee optimality of the performance objective used in
the design of the local controllers when the model in effect is not contained in the
model set. A similar approach was followed in (Athans et al. 1977). An illustration
will be presented to show that in the case of unanticipated faults the closed-loop
stability can no longer be guaranteed by such a control action.
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The remaining part of this chapter is organized as follows. In Section 7.2 the
general descriptions of the hybrid dynamic system and the multiple-model rep-
resentation of a nonlinear system are summarized. Some issues are also given on
the model set design. Section 7.3 gives an overview of the interacting multiple
model estimator, extended to the case when the model set consists of systems
with offset, and makes some comments on the design of the transition proba-
bility matrix. In Section 7.4 the controller reconfiguration scheme is outlined by
presenting a predictive controller strategy for a set of models. An illustration of
this approach is made in Section 7.5 by means of two realistic simulation stud-
ies, one with a linear model of one joint of a space robot manipulator (SRM), and
one with a nonlinear model of the inverted pendulum on a cart. Finally, Section
7.6 is dedicated to some concluding remarks.

7.2 The model set

In this section two classes of models will be presented that can be treated using
the approach developed in what follows. These classes are the hybrid dynamic
system and the piecewise linear system. Both systems are based on a set of local
linear models and as such can be treated in a unified framework. Attention will
also be paid on the problem of selecting the set of local models.

7.2.1 Hybrid dynamic model

A hybrid dynamic system can be described as one with both a continuously-
valued base state and discretely-valued structural (parametric) uncertainty (Li
1996). A typical example of such a system is one subject to faults since fault
modes are structurally different from each other and from the nominal mode.
By mode a structure or behavior pattern of the system is meant.

Assume that the actual system at any time can be modelled sufficiently accu-
rately by a stochastic hybrid system (Griffin and Maybeck 1997):

H :







x(k + 1) = A(k,m(k + 1))x(k) + B(k,m(k + 1))u(k)+
T (k,m(k + 1))ξ(k,m(k + 1)),

y(k) = Cy(k,m(k))x(k) + η(k,m(k)),
(7.1)

with the system mode sequence m(k) assumed to be a first order Markov chain
with transition probabilities

P{mj(k + 1)|mi(k)} = πij(k), ∀mi,mj ∈ I

where x ∈ R
n is the state vector; y ∈ R

p is the measured output of the system;
u ∈ R

m is the control input; ξ ∈ R
nξ and η ∈ R

p are independent identically
distributed discrete-time process and measurement noises with means ξ̄(k) and
η̄(k), and covariances Q(k) and R(k); m(k) is a discrete-valued modal state, i.e.
the index of the normal or fault mode, at time k, which denotes the mode in
effect during the sampling period ending at k. I = {m1,m2, . . . ,mN} is the set
of all possible system modes. πij(k) is the transition probability from mode mi
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to mode mj , i.e. the probability that the system will jump to mode mj at time
instant (k + 1) provided that it is in mode mi at time instant k. Obviously, the
following relation must hold for any mi ∈M

N∑

j=1

πij(k) =

N∑

j=1

P{mj(k + 1)|mi(k)} = 1.

This means that the probability that the system will remain in its current mode
of operation plus the probability that it will jump to another mode must be equal
to one.

It can be seen from (7.1) that the mode information is embedded (i.e., not
directly measured) in the measurement sequence y(k).

The hybrid dynamic model (7.1) is very useful for representation of systems
in which a certain (predefined) set of anticipated faults is assumed possible to
occur. For such systems one may design a local model for each anticipated faulty
mode of operation of the system.

7.2.2 Nonlinear system

Consider the nonlinear system

{
x(k + 1) = f(x, u, k)

y(k) = g(x, u, k)

One way of dealing with nonlinear systems is by means of approximating
them with local linear models, derived through linearization of the nonlinear
system around different operating points. The dynamics within each local re-
gion Xi is affine in the state vector x, i.e.

Hi :

{
x(k + 1) = Aix(k) + ai + Biu(k),

y(k) = Cy,ix(k) + cy,i + Dy,iu(k),
for x(k) ∈ Xi. (7.2)

The idea exploited in the chapter is then to represent the output of the nonlinear
systems outside of these pre-specified regions as a weighted combination of the
outputs of the local models.

In this chapter, the models in the model setM = {M1, . . . ,MN} will be de-
scribed by a collection of N local models

Mi :

{
xi(k + 1) = Ai(k)xi(k) + ai(k) + Bi(k)u(k) + Ti(k)ξi(k),

y(k) = Cy,i(k)xi(k) + cy,i(k) + ηi(k),
(7.3)

so that both the hybrid model in equation (7.1) on page 170 and the local lin-
ear models (7.2) are covered by (7.3). The process and measurement noise are
normally distributed random processes

ξi(k) ∼ N (ξ̂i, Qi(k)),
ηi(k) ∼ N (η̂i, Ri(k)).

The matrices Ai, Bi, Ti and Cy,i may all be different for different i.
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7.2.3 The model set design

The model set design is highly dependent on the particular application con-
sidered. However, there are some common features that have to be taken into
account. For example, there should be enough separation (distance) between
models so that they are identifiable by the IMM estimator. This separation should
exhibit itself well in the measurement residuals. Otherwise the IMM estima-
tor will not be very selective in terms of correct fault detection since it is the
measurement residuals that have the most dominant effect on the mode prob-
ability computation which in turn affects the accuracy of the overall state esti-
mates. On the other hand, if the separation is too large, numerical problems
may occur (Zhang and Li 1998). The distances between the models should be
measured in closed-loop because it is in closed-loop that the IMM estimator
will be used. For example, one possible measure for the separation between
two models, M1(z) and M2(z), is the H∞ norm of the discrepancy between the
corresponding closed-loop systems, M1,CL(z) and M2,CL(z), i.e. ‖M1,CL(z) −
M2,CL(z)‖∞. Another possible way to define distances between models is the
gap-metric (Vinnicombe 1999). Still, the question of how to select the models in
the model set remains unanswered.

If systems subject to faults are considered, total actuator faults may be mod-
elled by making zero(s) the appropriate column(s) of the B matrix. For total sen-
sor faults one needs to annihilate the appropriate row(s) of the Cy and cy matri-
ces. Partial actuator or sensor faults are modelled by multiplying the appropriate
column (row) of the B (or Cy and cy) matrix by a scaling factor. For example, a
partial 40% sensor fault is modelled by multiplying the corresponding row of the
Cy and cy matrices by 0.4. To prevent ambiguity, note that in this way 100% fault
means no fault at all, and that a 0% fault is a total fault. Note also, that sensor
faults affect the offset cy on the output equation, while actuator faults do not
affect the offset a on the state equation.

However, although sensor and actuator faults can be represented in this man-
ner, the problem of which particular fault conditions should be selected to form
a “good” model set still stands. Often in practise it turns out reasonable to se-
lect the models in the model set to correspond to total faults, or to 5-15% partial
faults, since in this case the convex combination of the models would cover a
greater set of possible faulty models. If, for example, one wants to be able to rep-
resent all sensor (actuator) faults in the interval [10%, 100%], one should build up
a model that describes the system with the 10% sensor (actuator) fault (in addi-
tion to the nominal model). Also such a selection has the potential to make the
distance between the models not too small.

Since there currently exists no systematic procedure for the choice ofM, in
this chapter it will be assumed that the model set is given.

7.3 The IMM estimator for systems with offset

This section will briefly summarize the IMM estimator (Zhang and Li 1998; Grif-
fin and Maybeck 1997) that basically consists of a set of Kalman filter, the i-th
Kalman filter designed for the i-th local model Mi represented by equation (7.3)
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on page 171. The offsets ai(k) and ci(k) do not change the Kalman filters (as well
as the IMM estimator) since they are additive to Ti(k)ξ̄i(k) and η̄i(k), respectively.
Thus, in the original setting of the IMM estimator (Zhang and Li 1998), the offsets
in the state ai(k) and in the output ci(k) should be added to the offsets resulting
from the mean values of the process and measurement noises, Ti(k)ξ̄i(k) and
η̄i(k), in order to take them into account.

The better performance of the IMM estimator over other multiple-model es-
timators is mostly due to the way the local Kalman filters are re-initialized at
each time instant. In the first step of the IMM estimator a model-conditional re-
initialization of the filters is performed. At time instant k the initial state estimate
x̂0

j (k−1|k−1) and covariance P 0
j (k−1|k−1) of the j-th filter are computed using

the estimates of all filters at the previous time instant k−1 under the assumption
that mode j is in effect at time instant j, i.e. (Zhang and Li 1998)

x̂0
j (k − 1|k − 1) = E{x(k − 1)| {yt}

k−1
0 , mj(k)}

P 0
j (k − 1|k − 1) = E{x̂0

j (k − 1|k − 1)}.

In this way the Kalman filters are interacting with each other and are not running
individually (as is the case with the noninteracting MM estimators).

At the second step the individual Kalman filters are run in parallel. The mode
probability is subsequently updated in the third step using model-conditional
likelihood functions. Finally, in the fourth step the overall state estimate and its
covariance are computed by means of a probabilistically weighted sum of the lo-
cal state estimates and covariances of the Kalman filters. Note that the inherent
parallel structure of the IMM estimator makes it very attractive for parallel pro-
cessing. For more details on the IMM estimator the reader is referred to (Zhang
and Li 1998) and the references therein.

Table 7.1 presents a complete cycle of the IMM estimator with Kalman filters.
The design parameters of the IMM algorithm are the transition probability

matrix and the model set. Note that the performance of the IMM estimator de-
pends also on the type and magnitude of control input excitation used. However,
the design of the transition probability matrix π is very important since the sen-
sitivity of the mode probabilities µi(k) with respect to π is very high.

A recommended choice of the diagonal entries in the transition probability
matrix is to match roughly the mean sojourn time of each mode:

πii = max

{

li, 1−
T

τi

}

where τi is the expected sojourn time of the i-th mode; T is the sampling inter-
val; li is a designed limit of the transition probability of the i-th mode to itself.
For example, the “normal-to-normal” transition probability can be obtained by
π11 = 1 − T/τ1, where τ1 denotes the mean time between faults, which in prac-
tice, is significantly greater than T .

7.4 The MM-based GPC

In this section it will be shown how the GPC, adopted from (Kinnaert 1989), can
be extended to the case of systems with offset and combined with the IMM esti-
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1. Mixing of the Estimates (for j = 1, . . . , N ):

predicted mode prob.: µj(k|k − 1) =

N∑

i=1

πijµi(k − 1)

mixing probability: µi|j(k − 1) = πijµi(k − 1)/µj(k|k − 1)

mixing estimate: x̂0
j (k − 1|k − 1) =

N∑

i=1

µi|j(k − 1)x̂i(k − 1|k − 1)

predicted errors: ei|j(k − 1) = x̂0
j (k − 1|k − 1) − x̂i(k − 1|k − 1)

mixing covariance:

P 0
j (k − 1|k − 1) =

N∑

i=1

µi|j(k − 1)
(

Pi(k − 1|k − 1) + ei|j(k − 1)eT
i|j(k − 1)

)

2. Model-Conditional Filtering (for j = 1, . . . , N ):

predicted state:
x̂j(k|k − 1) = Aj(k − 1)x̂0

j (k − 1|k − 1) + ai(k − 1)+
Bj(k − 1)u(k − 1) + Tj(k − 1)ξ̄j(k − 1)

predicted covariance:
Pj(k|k − 1) = Aj(k − 1)P 0

j (k − 1|k − 1)Aj(k − 1)T +
Tj(k − 1)Qj(k − 1)Tj(k − 1)T

measurement residual:
νj(k) = y(k) − Cy,j(k)x̂j(k|k − 1)−

cy,j(k) − η̄j(k)

residual covariance: Sj(k) = Cy,j(k)Pj(k|k − 1)CT
y,j(k) + Rj(k)

filter gain: Kj(k) = Pj(k|k − 1)CT
y,j(k)S−1

j (k)

updated state: x̂j(k|k) = x̂j(k|k − 1) + Kj(k)νj(k)

updated covariance: Pj(k|k) = Pj(k|k − 1) − Kj(k)Sj(k)KT
j (k)

3. Mode Probability Update (for j = 1, . . . , N ):

likelihood function: Lj(k) = 1√
|2πSj(k)|

exp[− 1
2
νT

j (k)S−1
j (k)νj(k)]

mode probability: µj(k) =
µj(k|k−1)Lj(k)

N∑

i=1

µi(k|k − 1)Li(k)

4. Combination of Estimates:

overall state estimate: x̂(k|k) =
N∑

i=1

µi(k)x̂i(k|k)

local estimation errors: ei(k) = x̂(k|k) − x̂i(k|k)

overall covariance: P (k|k) =
N∑

i=1

µi(k)(Pi(k|k) + ei(k)eT
i (k))

Table 7.1: One cycle of the IMM estimator for systems with offset.

mator to yield a technique for control of nonlinear systems.

7.4.1 The GPC for systems with offset

First, the optimal GPC for systems with offset will be derived. In this section, in
order to significantly simplify the expressions that will follow, the state space
matrices in the local models of the model set M will be considered as time-
invariant. Similar results can be derived for the general case when the matrices
are (known) functions of k.
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Consider a state-space model in the innovation form:

M̃ :

{
x̃(k + 1) = Ãx̃(k) + ã + B̃u(k) + K̃e(k),

y(k) = C̃yx̃(k) + c̃y + e(k),
M̃ ∈M. (7.4)

where e(k) = y(k)− C̃yx̃(k)− c̃y is the innovation sequence, and K̃ is the gain of

the Kalman filter that corresponds to model M̃ .

Consider the filter F given in state-space by

F :

{
xF (k + 1) = AF xF (k) + BF y(k)

z(k) = CF xF (k) + DF y(k)
(7.5)

where z(k) ∈ R
nz is a vector of (filtered) output signals that will be referred to as

the controlled outputs.

The augmented system is then obtained by combining (7.4) and (7.5):

S̃ :

{
x̂a(k + 1) = Ax̂a(k) + a + Bu(k) + Ke(k)

z(k) = Czx̂
a(k) + cz + Dze(k)

(7.6)

where x̂a(k) =
[

x̃T (k) xT
F (k)

]T
is the augmented state, and

A =

[
Ã 0

BF C̃y AF

]

, a =

[
ã
0

]

, B =

[

B̃
0

]

, K =

[

K̃
0

]

Cz =
[

DF C̃y CF

]
, cz = DF c̃y, Dz = DF

Now, let x̂a(k + j|k) be defined as the estimate of x̂a(k + j) made at time
instant k, i.e. given the input/output data up to time instant k. Then following
result holds.

Theorem 7.1 (j-step ahead predictor for systems with offset) Consider the aug-
mented system with offset (7.6). An unbiased prediction given the input/output
measurements up to time instant k is

x̂a(k + j|k) = Aj x̂a(k) +

j−1
∑

i=0

Aj−1−i(Bu(k + i) + a) + Aj−1Ke(k) (7.7)

An unbiased prediction of the filtered output signal is

ẑ(k + j|k) = CzA
j x̂a(k)+

j−1
∑

i=0

CzA
j−1−i(Bu(k + i) + a) + CzA

j−1Ke(k) + cz.
(7.8)
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Figure 7.1: The GPC tries to match the predicted output in the prediction hori-
zon to the reference trajectory signal while at the same time minimizing the “en-
ergy” (i.e. the control action) during the control horizon.

Proof: It can be written that

x̂a(k + j|k) = E{x̂a(k + j)}

= E{Ax̂a(k + j − 1) + a + Bu(k + j − 1) + Ke(k + j − 1)}

= E{A2x̂a(k + j − 2) + Aa + ABu(k + j − 2)+
AKe(k + j − 2) + a + Bu(k + j − 1) + Ke(k + j − 1)}

= E

{

Aj x̂a(k) +

j−1
∑

i=0

Aj−1−i (Bu(k + i) + Ke(k + i) + a)

}

.

= Aj x̂a(k) +

j−1
∑

i=0

Aj−1−i (Bu(k + i) + KE{e(k + i)}+ a) .

Since the innovation e(k + i) is not known for i ≥ 1, but is white noise, E{e(k +
i)} = 0 for i ≥ 1, so that equation (7.7) follows.

Equation (7.8) then follows directly by observing that (for j ≥ 1)

ẑ(k + j|k) = E{Czx̂
a(k + j) + cz + Dze(k + j)}

= Czx̂
a(k + j|k) + cz.

where substitution of equation (7.7) completes the proof. �

The basic idea behind the Predictive Control is visualized on Figure 7.1 and
can be summarized as follows. Given a desired reference trajectory signal ω(k)
the GPC tries to minimize a weighted norm of the difference between the pre-
dicted output and the reference trajectory in a future interval of time called the
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prediction horizon, while at the same time trying to minimize the control action
in another future interval of time called control horizon. To achieve this the fol-
lowing cost function is defined

J(k)
.
=

N2∑

j=N1

‖ẑ(k + j|k)− ω(k + j)‖2 +

Nu∑

j=1

‖u(k + j − 1)‖2r, (7.9)

where the integers N1, and N2 (N2 > N1) define the prediction horizon, and
Nu ≤ N2 - the control horizon, and where it is denoted ‖x‖Q = xT Qx, Inz

is the
(nz × nz) identity matrix, r is an (m×m) diagonal matrix r = diag{ri}weighting
the inputs, and ω(k) ∈ R

nz is the vector of the references for each controlled
(filtered) output z(k). The standard assumption is imposed that that the control
action remains constant after the control horizon (Clarke and Mohtadi 1989), i.e.

Assumption 7.1 uk+i = uk+Nu
for i ≥ Nu.

The cost function (7.9) is to be minimized over the control signal in the con-
trol horizon. To this end the matrices are now formed

U(k) =








u(k)
u(k + 1)

...
u(k + Nu − 1)








, Ẑ(k) =








ẑ(k + N1|k)
ẑ(k + N1 + 1|k)

...
ẑ(k + N2|k)








the predictive model for the filtered output for (N2−N1 +1) future time instants
can be written as

Ẑ(k) = Γx̂a(k) + HU(k) + We(k) + O.

with

H
.
=












CzAN1−1B . . . 0 . . . 0
CzAN1B . . . CzB . . . 0

...
. . .

...
. . .

...

CzAN2−1B · · · CzAN2−N1−1B . . . Cz

N2−1
∑

i=Nu

AN2−i−1Bu












,

Γ
.
=








CzAN1

CzAN1+1

...

CzAN2








, W
.
=








CzAN1−1K
CzAN1K

...

CzAN2−1K








, O
.
=


















cz +

N1−1
∑

i=0

CzAia

cz +

N1∑

i=0

CzAia

...

cz +

N2−1
∑

i=0

CzAia


















.

(7.10)
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Theorem 7.2 (The GPC control law for systems with offset) Consider the system
(7.6) and the cost function (7.9) on page 177. The optimal control law that mini-
mizes the cost function (7.9) is given by

U(k) = −(HT H + R)−1HT (Γx̂a(k) + We(k) + O − Ω(k), (7.11)

where the matrices H , Γ, W and O are defined in equation (7.10), and where

R
.
= r ⊗ INu

, Ω(k)
.
=






ω(k + N1)
...

ω(k + N2)




 . (7.12)

Proof: Using the notation in equations (7.10) and (7.12), the cost function (7.9)
can be rewritten in the following way

J = ‖Ẑ(k)− Ω(k)‖2 + ‖U(k)‖2R

= (HU(k) + Γx̂a(k) + We(k) + O − Ω(k))T×
(HU(k) + Γx̂a(k) + We(k) + O − Ω(k)) + U(k)T RU(k).

Denote, for simplicity of notations,

Q(k) = Γx̂a(k) + We(k) + O − Ω(k), (7.13)

so that Q(k) contains signals that are independent on U(k). Therefore

J = (HU(k) + Q(k))T (HU(k) + Q(k)) + U(k)T RU(k)

= U(k)T HT HU(k) + U(k)T HT Q(k)+
QT (k)HU(k) + QT (k)Q(k) + U(k)T RU(k)

= U(k)T (HT H + R)U(k) + U(k)T HT Q(k)+
QT (k)HU(k) + QT (k)Q(k).

Taking the partial derivative of J with respect to U(k) yields

∂J

∂U(k)
= 2

{
(HT H + R)U(k) + HT Q(k)

}
.

Setting the righthand side of the above equation equal to zero, solving subse-
quently with respect to U(k), and then substituting the expression for Q(k) in
equation (7.13) results in equation (7.11). �

Although the control action is computed for Nu time instances ahead in the
future, only the control action at the current time instant is implemented

u(k) =
[

Im, 0
]
U(k). (7.14)
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7.4.2 The combination of the GPC with the IMM estimator

Next, the MM-based GPC for systems with offset will be derived. It is based on a
combination of the IMM estimator and the GPC, both for systems with offset.

Consider the model set of augmented systems S = {S1, S2, . . . , SN}, where
each Si results after taking M̃ = Mi ∈ M in equation (7.4) on page 175 and aug-
menting the resulting model with the filter F in equation (7.5) on page 175. The
state of the i-th augmented model Si is denoted as x̂a

i (k) = [x̂T
i (k|k), xT

F (k)]T .
Let also

Ẑi(k) = HiU(k) + Γix̂
a
i (k) + Wiei(k) + Oi

be the corresponding predictive model of the filtered output. The matrices Hi,
Γi, Wi, and Oi can then be obtained from equation (7.10) on page 177 after mak-
ing the substitution

(A, a,B,K,Cz, cz)←− (Ai, ai, Bi,Ki, Cz,i, cz,i).

The innovation sequences are here similarly defined as

ei(k) = z(k)− Cy,ix̂i(k|k)− cy,i.

We remind that, for the sake of simplifying the expressions that follow, it is
assumed that the matrices (Ai, ai, Bi,Ki, Cz,i, cz,i) time-invariant. Still, the re-
sults can easily be extended for the case when the matrices are known functions
of the time instant k as in (7.3) on page 171.

Assumed that the “true system” can be represented accurately enough as a
convex combination of the models in the model set, i.e.

S =

N∑

i=1

µiSi, µi ∈ R (7.15)

with
N∑

i=1

µi = 1, µi ≥ 0.

Thus, we define the extended system (in innovation form)

xe(k + 1) = Axe(k) + a + Bu(k) + Kee(k),
z(k) = Cxe(k) + c + Dee(k),

where it is denoted

A =








A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · AN








, a =








a1

a2

...
aN








, B =








B1

B2

...
BN








,

C =
[

µ1Cz,1, µ2Cz,2, . . . µNCz,N

]
, c =

N∑

i=1

µicz,i,

D =
[

µ1Dz,1, µ2Dz,2, . . . µNDz,N

]
, K = diag(K1, . . . ,KN ),

(7.16)
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and where the state and the innovation vectors for the system S are given by

xe(k) = [(x̂a
1(k))T , . . . , (x̂a

N (k))T ]T ,
ee(k) = [eT

1 (k), . . . , eT
N (k)]T .

In this way the outputs of the local models are blended. One may prefer to form a
mixing of both the states and the outputs instead. One could then follow similar
lines of reasoning to derive the corresponding control action.

Note that this model is “fictitious” – it is not used for estimation but only as a
way to represent the real system using the local state estimates and innovations
from the IMM algorithm.

Since the GPC is based on a prediction of the controlled output in the pre-
diction horizon, the assumption is imposed that the weights µi(k) in the convex
combination (7.15) remain unchanged during the prediction horizon.

Assumption 7.2 the mode probabilities do not change over the maximum costing
horizon, i.e. µi(k + j) = µi(k), ∀j ≤ N2.

When dealing with faults this assumption is in practise not very restrictive since
faults are events that occur rarely, so that the weights can be expected to change
only once in large intervals of time.

Lemma 7.1 (The MM-based GPC for systems with offset) Consider the system S
with state space matrices given by (7.16), and with state reconstructed by the IMM
estimator (given in Table 7.1). Then under Assumption 7.2 the predictive model
for the augmented system (7.15) is

Ẑ(k) =

N∑

i=1

µi(k)Ẑi(k),

and the cost function (7.9) on page 177 for the augmented system S (7.16) is min-
imized by

U(k, µ) = −(HT (µ)H(µ) + R)−1H(µ)T×
(Γ(µ)xe(k) + W (µ)ee(k) + O(µ)− Ω(k)) ,

(7.17)

where

H(µ) =

N∑

i=1

µiHi, Γ(µ) = [µ1Γ1, . . . , µNΓN ],

W (µ) = [µ1W1, . . . , µNWN ], O(µ) =

N∑

i=1

µiOi.

(7.18)

Proof: The prediction of the filtered output for the system S can be written as
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(see Theorem 7.1)

ẑ(k + j|k) = CAjxe(k) +

j−1
∑

p=0

CAj−1−pa+

j−1
∑

p=0

CAj−1−pBu(k + p) + CAj−1Kee(k) + c

=
N∑

i=1

µiCz,iA
j
i x̂

a
i (k) +

N∑

i=1

j−1
∑

p=0

µiCz,iA
j−1−p
i ai +

N∑

i=1

µicz,i+

N∑

i=1

j−1
∑

p=0

µiCz,iA
j−1−p
i Biu(k + p) +

N∑

i=1

µiCz,iA
j−1
i Kie

e
i (k)

=
N∑

i=1

µi

{

Cz,iA
j
i x̂

a
i (k) +

j−1
∑

p=0

cz,iA
j−1−p
i ai+

j−1
∑

p=0

Cz,iA
j−1−p
i Biu(k + p) + Cz,iA

j−1
i Kie

e
i (k) + cz,i

}

=
N∑

i=1

µiẑ(k + j|k).

Therefore,

Ẑ(k) =

N∑

i=1

µi(k)Ẑi(k)

=
N∑

i=1

µi(k)[HiU(k) + Γix
e
i (k) + Wie

e
i (k) + Oi]

=

(
N∑

i=1

µi(k)Hi

)

U(k) +

N∑

i=1

µi(k)Γix
e
i (k)+

N∑

i=1

µi(k)Wie
e
i (k) +

N∑

i=1

µi(k)Oi

= H(µ)U(k) + Γ(µ)xe(k) + W (µ)ee(k) + O(µ),

where the matrices H(µ), Γ(µ), W (µ), and O(µ) are defined in equation (7.18).
Application of Theorem 7.2 to this predictive model yields the optimal control
law (7.17). �

Remark 7.1 Notice that although the global predictive model Ẑ(k) for the aug-
mented system S (7.15) is a convex combination of the local predictive models
Ẑi(k) for the local systems Si, this is not the case with the optimal control law
U(k, µ), i.e. it cannot be represented as a convex combination of the optimal con-
trol laws Ui(k, µ) obtained by the GPC controllers corresponding to the systems Si.

The control action that is actually implemented at time instant k is then

u(k, µ) =
[

Im, 0
]
U(k, µ).
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Algorithm 7.1 (Controller Reconfiguration)

GIVEN x̂i(k|k), Ω(k), AND z(k).

Step 1. INITIALIZATION:

H = µ1(k)H1, Γ = µ1(k)Γ1, W = µ1(k)W1, O = µ1(k)O1,
xe(k) = [x̂T

1 (k|k)T , xT
F (k)]T ,

ee(k) = (z(k)− Cz,1x̂1(k|k)− cz,1)
T .

Step 2. FORM THE NECESSARY MATRICES:

FOR i = 2 : N
H ← H + µi(k)Hi

Γ← [Γ, µi(k)Γi]
W ← [W, µi(k)Wi]
O ← O + µi(k)Oi

xe(k)← [(x̂e(k))T , x̂T
i (k|k)T , xT

F (k)]T

ee(k)← [(ee(k))T , (z(k)− Cz,ix̂i(k|k)− cz,i)
T ]T

END

Step 3. COMPUTATION OF THE CONTROL ACTION:

L = [Im, 0](HT H + R)−1

u(k) = −LHT (Γx̂e(k) + Wee(k) + T − Ω(k))

Algorithm 7.1 provides a summary of the reconfiguration algorithm.

7.5 Simulation results

In this section two case studies will be presented. In the first one a linear model
of one joint of a space robot manipulator is used and the case is considered when
sensor faults occur. The second example deals with a nonlinear model of the
inverted pendulum on a cart. The model set in this experiment is obtained by
performing linearization of the nonlinear system around five different operating
points.

7.5.1 Experiment with the SRM

The case study that will be presented in this section is simple but also a very il-
lustrative one. It considers the linear model of one joint of a space robot manip-
ulator system, described in Section 3.6 on page 86. A schematic representation
of the SRM is given in Figure 3.2 on page 86.
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Parameter: Symbol: Value:

gearbox ratio N -260.6

joint angle of inertial axis Ω variable

effective joint input torque T eff
j variable

motor torque constant Kt 0.6

the damping coefficient β 0.4

deformation torque of the gearbox Tdef variable

inertia of the input axis Im 0.0011

inertia of the output system Ison 400

joint angle of the output axis ǫ variable

motor current ic variable

spring constant c 130000

Table 7.2: The relevant values of the parameters in the linear model of one joint
of the SRM.

In this experiment the case when a fault occurs which is not in the model set
is considered. This faulty model will be represented as a convex combination of
the models inM.

The state-space model of the system is given by

ẋ(t) =







0 1 0 0
0 0 c

N2Im
0

0 0 0 1

0 − β

Ison
− c

N2Im
− c

Ison
− β

Ison







x(t) +







0
Kt

NIm

0
− Kt

NIm







u(t)

y(t) =

[
1 0 1 0
0 N 0 0

]

x(t) +

[
1
0

]

ξ(t)

(7.19)

This model is discretized with sampling period Ts = 0.1, [sec]. The system pa-
rameters are given in Table 7.2.

The following two models comprise the model set in this experiment:

• M1: the nominal (no faults) model (see equation (7.19) and Table 7.2).

• M2: a faulty model, representing 10% (partial) fault of sensor No.1.

Note, that each model representing a partial fault of sensor No.1 in the inter-
val [10%, 100%] can be written as a convex combination of the two models inM,
i.e. co{M1,M2}.

The scenario for this experiment is the following:

• The system is in its normal mode of operation (model M1 is active) in the
time interval [0, 99].

• At k=100 a 75% (partial) fault of sensor No.1 occurs. It corresponds to the
following convex combination of the models in the model set:

MREAL = 0.7222M1 + 0.2778M2.
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Figure 7.2: The mode probabilities for the experiment with the SRM.

The following choice of the predictive control parameters is made:

• Minimum costing horizon: N1 = 1.

• Maximum costing horizon: N2 = 15.

• Control horizon: Nu = 8.

• Weights on the control action: R = 0.02I8.

• Reference signal: as a reference ω(k) a (low-pass) filtered step signal ω̄(k)
from 0 to 1 at k = 0, and from 1 to 0 at k = 80 is selected. The filter used is
the following:

WF (z) =
ω(z)

ω̄(z)
=

0.1813

z − 0.8187
. (7.20)

• Transition probability matrix:

π =

[
0.55 0.45
0.55 0.45

]

.

Figures 7.2 and 7.3 present the results from this experiment. Since in the ini-
tial experiments there were very big fluctuations in the mode probabilities, the
following low-pass filter was introduced

µ̃i(k) = 0.98µ̃i(k − 1) + 0.02µi(k − 1).

It can be seen from Figure 7.2 that during the normal operation of the sys-
tem (k < 100), the probability that corresponds to model M1 is equal to 1. Then,
when at k = 100 a 75% fault occurs, the two mode probabilities change accord-
ingly. To be more precise, their means during the second half of the simulation
time are,

• µ̄1(k) = 0.7213, for k = 100, . . . , 200, and
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Figure 7.3: The output z1(k), its prediction ẑ1(k), and the reference w(k), for the
experiment with the SRM.

• µ̄2(k) = 0.2787, for k = 100, . . . , 200.

and as a result a model representing 74.92% fault of sensor No.1 is detected.
Figure 7.3 gives a plot of the system output, its prediction and the (filtered)

reference signal.
As it was argued in the introduction, the existing MMAC algorithms (May-

beck and Stevens 1991; Athans et al. 1977), based on a bank of LQG controllers,
can be inefficient when an unanticipated fault occurs. This is because the op-
timal LQG controller for the model of such a fault is not a convex combination
of the optimal LQG controllers, each based on a given model from the model
set. To illustrate this an additional experiment is presented, in which two op-
timal LQG controllers were designed: one for the nominal system (model M1),
and one for the faulty model M2, representing a 10% fault of sensor No. 1. In
this scenario the 75% unanticipated fault of sensor No. 1 is in effect throughout
the whole simulation. The reference signal was selected in the same way as in
the simulation with the MM-based GPC (see equation (7.20)). Figure 7.4 depicts
the results from this experiment. It can be seen that in this experiment such a
convex combination of the control actions may lead to an unstable closed-loop
system for some unanticipated faults.

7.5.2 Experiment with the inverted pendulum on a cart

The next experiment illustrates the application of the MM-based GPC to the con-
trol of nonlinear systems. For this purpose a nonlinear model of the inverted
pendulum on a cart is considered (Khalil 1996) as a control system. First, a lin-
earization of the nonlinear model around five different operating points is per-
formed, leading to a model set of five models. Afterwards the MM-based GPC is
applied to the nonlinear model of the pendulum. The dynamic equations of the
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Figure 7.4: The output z(t) and the reference signal ω(t) of system with an unan-
ticipated 75% sensor fault. The control action now is calculated as a convex com-
bination of the control actions of the two optimal LQG controllers.

system (see Figure 7.5) are

{
ẋ1 = x2

ẋ2 =
g

l2
sin(x1)−

a

l2
cos(x1)

where x1 = Θ, [rad] is the angle between the pendulum and the vertical axis,
x2 = Θ̇, [rad/sec] is the angular velocity of the pendulum, g = 9.81, [m/sec2] is
gravity acceleration, l, [m] is the length of the pendulum, and a, [m/sec2] is the
acceleration of the cart.

Remark 7.2 A similar problem is encountered during a rocket launch, when the
rocket boosters have to be fired in a controlled manner so as to maintain the up-
right position of the rocket.

Let the system be linearized around the point x∗ = [x∗
1, 0]T . Defining

f2(x1, x2, a) =
g

l2
sin(x1)−

a

l2
cos(x1)

the linearized systems can be derived the following way (the first equation is
linear and will not be considered):

ẋ2 = f2(x
∗
1, x

∗
2, 0) + ∂f2

∂x1

∣
∣
∣
x=x∗

(x1 − x∗
1) + ∂f2

∂x2

∣
∣
∣
x=x∗

(x2 − x∗
2) + ∂f2

∂a

∣
∣
∣
x=x∗

a

= g
l2 sin(x∗

1) + g
l2 cos(x∗

1)(x1 − x∗
1) + 1

l2 cos(x∗
1)a

=
(

g
l2 cos(x∗

1)
)
x1 −

g
l2 (sin(x∗

1) + cos(x∗
1)) x∗

1 +
(

1
l2 cos(x∗

1)
)
a
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Figure 7.5: The Inverted Pendulum on a Cart.

Therefore the system can be written in the form (7.2) with

Ai =

[
0 1

g
l2 cos(xi

1) 0

]

, ai =

[
0

− g
l2

(
sin(xi

1) + cos(xi
1)
)
xi

1

]

,

Bi =

[
0

(
1
l2 cos(xi

1)
)

]

, Ci =
[

1 0
]
, ci = 0, Di = 0

where xi
1 is the i-th linearization point. The model set considered for this simu-

lation corresponds to the linearization points xi
1 = {0,±10,±20} , [deg].

All these models are discretized with sampling time Ts = 0.1, [sec] It was de-
cided that models corresponding to angles |Θ| > 20, [deg] are unnecessary since
the problem will be to maintain an angle of 10, [deg] between the pendulum and
its upright position.

The following parameters were chosen:

• Length of the pendulum: l = 1m.

• Minimum costing horizon: N1 = 1.

• Maximum costing horizon: N2 = 5.

• Control horizon: Nu = 4.

• Weights on the control action: R = diag{0, 0, 0, 0}.

• Reference signal w(k) = π
18 [1, 1, 1, 1]T , [rad]. This corresponds to a set-

point of 10, [deg].

• Transition probability matrix:

π =









0.95 0.0125 0.0125 0.0125 0.0125
0.0125 0.95 0.0125 0.0125 0.0125
0.0125 0.0125 0.95 0.0125 0.0125
0.0125 0.0125 0.0125 0.95 0.0125
0.0125 0.0125 0.0125 0.0125 0.95








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Figure 7.6: The Mode Probabilities.
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Figure 7.7: The Output Signal z = x1 and its prediction zp = x̂1 from the IMM
estimator.

• Means of the noises: ξ̄ = η̄ = 0.

• Covariances of the noises: Q = 10−6I2 and R = 10−6.

The results of this simulation are depicted on Figures 7.6 and 7.7. The sim-
ulations are made with the nonlinear model of the inverted pendulum. Figure
7.7 shows both the angle Θ and its prediction Θ̂ by the IMM estimator, which
seem to overlap. A deviation between the two curves, of course, exists. Note, that
when the system output gets close 10o, which corresponds to model M2 from the
model set, the corresponding to this model mode probability µ2 (see Figure 7.6)
gets close to one, i.e. µ2 ≈ 1. Since the pendulum never goes to negative degrees,
the mode probabilities µ3 and µ5 stay at zero during the simulation.
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7.6 Conclusion

This chapter presented an algorithm for the control of nonlinear systems repre-
sented by hybrid dynamic models or nonlinear systems. The method consists of
two parts: identification and controller reconfiguration. The first part is essen-
tially the IMM estimator whose purpose is to give a state estimate and a mode
probability for each model in the model set. The controller reconfiguration part
utilizes this information to derive a GPC action, assuming that the mode proba-
bilities are constant over the maximum costing horizon.

The performance of the IMM estimator is strongly dependent on the choice
of the transition probability matrix, as well as on the models in the model setM.
A model set consisting of models close to one another results in a deterioration
of the performance of the IMM estimator, which in turn affects the performance
of the MM-based GPC.

Another very important issue is the choice of the transition probability ma-
trix π. It should be pointed out that serious difficulties regarding the selection of
this matrix were encountered, since the IMM estimator turns out to be extremely
sensitive to this design parameter. In addition, the entries in the transition prob-
ability matrix represent the probabilities for switches from one expected mode
to another expected mode. However, they do not reflect the probabilities for
jumps to unexpected modes.
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8
Conclusions and
Recommendations

In this thesis some novel approaches were presented to both passive and active
fault-tolerant control with the main focus on dealing with model and FDD un-
certainty. This final chapter discusses on the results presented in this thesis and
gives suggestions for future research.

8.1 Conclusions

In the field of fault-tolerant systems design there are two main research streams,
the one (called FDD) dealing with the detection and diagnosis of faults that oc-
cur in the controlled system, and the other (FTC) looking at the problem of achiev-
ing fault-tolerance by means of designing passive or active fault-tolerant control
methods. Unfortunately, although there is a large amount of publications in the
field, the interaction between these two research lines is still rather weak. The
FTC methods that rely on fault diagnosis, for instance, often assume that the
perfect FDD scheme is present that provides precise fault estimates with no de-
lay. The FDD approaches, on the other hand, do not take into consideration
the presence and the needs of the FTC part. As a result, the integration of these
schemes becomes very difficult in practice. This thesis considers the FTC prob-
lem with a clear view on the presence of an imperfect FDD scheme by means of
considering uncertainty in the fault estimates provided by the FDD. Moreover,
FDD uncertainty with time-varying size can also be dealt with. This allows us
to consider an even more realistic operation of the FDD scheme that would pro-
duce fault estimates with bigger uncertainty in the first moments after the occur-
rence of a fault, and would subsequently provide more and more accurate fault
estimates (with little uncertainty) as more measurement data becomes available
from the system. Furthermore, in addition to the FDD uncertainty, the devel-
oped methods make it possible to treat also model uncertainty which allows to
reduce the gap between the real-life system and its (linear) model. In this way
an attempt is made in this thesis to develop methods that could more easily be
combined with existing FDD approaches in a real-life application.

The main assumption imposed in this thesis is that both the fault-free sys-
tem and the faulty system are stabilizable and detectable1. In this way, the de-

1Stabilizability (detectability) is weaker than controllability (observability) as in the former some
of the states corresponding to stable dynamics are allowed to be uncontrollable (unobservable).

191
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veloped methods are applicable only to faults that do not affect these two ba-
sic properties that practically ensure that a stabilizing controller exists, so that
controller reconfiguration still makes sense. If a fault occurs that results in an
un-stabilizable system then there exists no controller that can yield the closed-
loop system stable. In such cases other measures than controller reconfiguration
have to be taken as, for instance, safe termination of the operation of the system.
Such cases fall outside the scope of this thesis.

Both passive and active methods for FTC are developed in this thesis. A short
description of them is provided below.

The passive approaches to FTC, discussed in Chapters 2 and 3, do not require
the availability of a FDD scheme. Instead, these methods aim at designing one
robust controller that achieves reduced closed-loop system sensitivity to a cer-
tain set of anticipated faults. To this end, besides the parametric uncertainty of
the model, the set of possible faults are also viewed as uncertainty in the model
of the system. In this way the goal is to design a controller that provides guar-
anteed robust stability and performance in the presence of faults and model un-
certainty. The method of Chapter 2 can be used for solving this problem in the
state-feedback case where it is representable as a robust LMI problem. The stan-
dard methods for solving robust LMIs usually assume convenient structure of
the model uncertainty, e.g. polytopic, affine or in LFT form, and as such impose
a restriction on the class of faults that can be addressed. To circumvent this, the
method in Chapter 2 is developed in a probabilistic framework that makes it pos-
sible to consider a very general dependance of the system matrices on the faults
and the uncertainties. However, Chapter 2 is much more than just a method for
passive FTC design; the probabilistic approach presented there can be viewed as
a central tool that is utilized throughout some of the other chapters of the thesis
where robust LMIs appear.

Contrary to the state-feedback case, in the output-feedback case most robust
controller design methods are not representable as robust LMI problems. Even
worse, they often take the form of robust BMI optimization problem that have
been shown to be NP-hard problems. Chapter 3 is focused on finding locally
optimal solutions to such BMI problems by means of performing a local BMI
optimization. To initialize the optimization, a method is proposed for finding
an initially feasible robust output-feedback controller based on LMIs. This LMI
method might be conservative but can be used as a good initial guess for the BMI
optimization. The complete method developed in this chapter allows to design
robust output-feedback FTC in the presence of polytopic uncertainty, i.e. unlike
the probabilistic method this approach cannot deal with a general uncertainty
representation. For that reason this method may be very conservative if applied
to systems in which the state-space matrices do not depend in an affine way on
the faults and/or on the uncertain parameters.

Although passive FTC methods possess a number of advantages (e.g. no FDD
is necessary, simple for implementation, etc.), a serious drawback is they can
only consider a restricted set of anticipated faults that do not have “big” effect
on the model of the system – searching for only one controller that provides ac-
ceptable performance in the face of a wide variety of possible (combinations of)
faults is in practice too optimistic. For that reason the active approaches have
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attracted much more attention by the FTC community. Active FTC methods are
developed in Chapters 4-7 of this thesis. These methods assume the presence
of an FDD scheme that can provide estimates of the faults. A wide class of sen-
sor, actuator and component faults can be treated by these active methods for
FTC. Moreover, FDD uncertainty with time-varying size can also be addressed
by the methods in Chapters 4-5. This is achieved in Chapter 4 by means of LPV
controller design in which the controller can be scheduled by both the fault esti-
mates as well as by other quantities related to the size of the FDD uncertainty. By
making use of the probabilistic approach, this method can deal with a wide class
of faults in the presence of both model and FDD uncertainties. Both the state-
feedback and the output-feedback cases are considered. The state-feedback
LPV-based FTC has also been demonstrated on a real-life experimental setup in
Chapter 6 consisting of a brushless DC motor. The output-feedback LPV-based
FTC is much more computationally involving and can be somewhat conserva-
tive as it relies on the LMI-based initialization of the BMI optimization in Chap-
ter 3. It basically consists of first designing a state-feedback gain matrix, which
is next kept fixed during the design of the remaining controller matrices. Fur-
thermore, the second step involves an additional structural constraint on the
Lyapunov matrix that adds up to the conservatism. Conservatism is, however,
unavoidable in deriving any numerically tractable method for an NP-hard prob-
lem.

In order to avoid solving nonconvex, NP-hard BMI optimization problems in
the output-feedback case, a method for robust output-feedback MPC was devel-
oped in Chapter 5. Unlike most of the existing state-space approaches to MPC,
the method from this chapter does not assume that the state vector is available
for measurement – a rather restrictive assumption in practice. When the state
is not measured, the standard approach is to make use of a state observer to re-
construct the missing state information and to use the state estimate, instead of
the true state, in the computation of the control law. Moreover, the well-known
separation principle allows us to design the observer and the controller sepa-
rately from each other. This separation principle is, however, not valid when
uncertainty is considered in the model. For that reason, the approach followed
in Chapter 5 combines the design of a Kalman filter over a finite time window
with the design of a finite-horizon MPC into one worst-case robust linear least
squares problem. In this way the robust output-feedback MPC problem takes a
very attractive form for the probabilistic setting of Chapter 2. Among the useful
properties of this method are

• the self-reconfigurability property of the MPC controller, i.e. reconfigura-
tion can be achieved by changing the internal model after a fault has been
diagnosed by the FDD scheme,

• control action saturation can explicitly be treated by adding up constraints
to the robust LLS problem,

• a very wide class of faults, model and FDD uncertainties can be considered
due to the probabilistic setting of the solution.

An obvious drawback is the computational complexity and the fact that, in its
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basic form, the stability of the closed-loop system with an MPC controller cannot
be theoretically guaranteed.

Finally, Chapter 7 represents an attempt in the direction of developing ro-
bust active FTC for nonlinear systems in the presence of model uncertainties.
The chapter presents a multiple-model method where the starting point is the
design of a set of models that can accurately enough represent the behavior of a
nonlinear (or faulty) system. At each time instant the current mode of operation
of the system is represented as a convex combination of the local models in the
model set. The weights in this convex combination, called the mode probabil-
ities, are provided by the interacting multiple model (IMM) method based on a
bank of Kalman filters, one for each model. Then under the assumption that the
mode probabilities do not change in some future interval of time, a generalized
predictive controller is reconfigured by the estimated mode probabilities. The
main difficulty in this approach is the choice of the local models in the model set
as well as the transition probability matrix that assigns probabilities for jumps
from one mode to the other. The IMM algorithm turns out to be very sensitive
to these quantities when the current mode of operation of the system cannot be
represented accurately by any individual local model. Another disadvantage of
this approach is that no uncertainty can be considered.

8.2 Recommendations

In view of the shortcomings of the methods presented in this thesis, the follow-
ing suggestions for future research are made:

• The passive and active methods for FTC, presented in Chapters 2-5, can
only deal with linear systems in the presence of model and FDD uncer-
tainty. The multiple model (MM) method from Chapter 7, on the other
hand, is applicable to nonlinear systems but cannot deal with uncertainty.
It would therefore be useful to investigate the possibility of combining the
MM method with one of the active FTC methods with the aim to develop
a robust active FTC approach for uncertain nonlinear systems. To this end
one may, for instance, think about replacing the MPC controller in the MM
method of Chapter 7 with the robust MPC controller from Chapter 5 (called
iPC). The bank of Kalman filters, used in the IMM method, would then no
longer be needed as the local state estimates will be provided by the local
iPC controllers. Although this approach looks attractive, a strong disad-
vantage would be the increased computational burden since the iPC con-
trollers are based on a time-consuming optimization.

• The main disadvantages of the iPC method from Chapter 5 are the com-
putational complexity and the lack of theoretical guarantees for closed-
loop stability. To enforce stability, one may think of including end-point
constraints into the optimization which, however, increases even more the
computational burden. From practical viewpoint it is therefore important
that a computationally faster implementation of the scheme is developed.
To this end one could, for instance, analyze the possibility of using the opti-
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mal ellipsoid computed at each time-iteration at the next iteration. This is
expected to significantly reduce the computational effort of the algorithm.

• It was discussed in Chapter 2 that the ellipsoid algorithm (EA), developed
there, has an advantage over the existing subgradient iteration algorithm
(SIA) method that in its original form the latter requires a-priori informa-
tion about the solution set, namely it assumes that a radius of ball con-
tained into the solution set is given. Although some modifications were
subsequently proposed that overcome this difficulty, these modifications
result in an increased number of iterations before convergence to a feasi-
ble solution. For both the SIA and the EA method upper bounds on the
maximum number of correction steps that can be executed before a feasi-
ble solution is found have been derived and, as demonstrated in Example
2.2 on page 48, the upper bound for the EA method is much lower than
that of SIA. By only comparing these upper bounds, however, one cannot
draw the conclusion that EA method will actually converge faster than SIA.
Moreover, for some problems the solution set is unbounded so that any ra-
dius would do for the SIA method, while the EA method might face difficul-
ties in the computation of the initial ellipsoid. On the other hand, as shown
in Section 2.4.2 on page 54, for some robust least squares problems the ini-
tial ellipsoid can be computed in a straightforward way, while the SIA algo-
rithm can be expected to face difficulties due to the fact that the solution
set may have a very small volume or may even be empty. Hence, the one
algorithm may be more suitable for certain problems than the other, and
vice versa. A more thorough evaluation and analysis of these two methods
is therefore necessary. A user-friendly implementation of the probabilistic
methods in the form of a toolbox for MATLABr might also be useful.
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Summary

Faults in controlled systems represent malfunctioning of the system that results
in performance degradation or even instability of the system. When untreated,
small faults in some subsystems of the controlled system can easily develop into
serious overall system failures. In safe-critical systems such failures can have
serious consequences ranging from economical losses to human deaths. It is
therefore important that such safe-critical systems possess the properties of in-
creased reliability and safety.

A standard approach in practice to improve these properties is to introduce
hardware redundancy in the system through duplicating or triplicating some
critical hardware components. This approach, however, has limited applicability
due to the increased weights and costs. For that reason most of the research be-
ing conducted in this field is focused on exploiting the existing in the system an-
alytical redundancy by means of using model-based fault-tolerant control (FTC).

There are two main approaches to fault-tolerant control: passive and active.
The passive FTC methods are based on robust controller design methods and
aim at achieving increased insensitivity of the closed-loop system with respect
to a certain class of anticipated system faults. The main disadvantages of this ap-
proach is that only a very restricted set of faults can be treated (usually faults that
do not significantly affect the dynamic behavior of the system) and that it results
in a decreased system performance. The latter is explained by the worst-case op-
timization approach that is inherent to robust control so that as a result one and
the same performance is achieved for all considered faulty modes of operation
of the system. The active FTC approach, on the other hand, is either based on a
complete controller redesign (reconfiguration) or on a selection of a controller
from a set of pre-designed controllers. This method often requires the presence
of a fault detection and diagnosis (FDD) scheme that has the task to detect and
localize the faults that occur in the system. The structure of a complete active
FTC system based on FDD is depicted in Figure 8.1.

This thesis presents both methods for passive and for active FTC. It does not
consider the FDD part in Figure 8.1, which is a separate line of research in this
area. However, striving to arrive at a more realistic problem formulation the
thesis is focused on the problem of dealing with inaccurate information com-
ing from the FDD part (i.e. FDD uncertainty) as well as with uncertainty in the
model of the controlled system.
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Figure 8.1: Main components of an active FDD-based FTC system.

Passive FTC Approaches

In Chapters 2 and 3 passive methods for FTC design were presented where the
aim is to achieve closed-loop system robustness with respect to model uncer-
tainties and system faults at the same time. To this end, the problem of passive
FTC has been defined in the thesis as the problem of computing a robust con-
troller K by solving the following optimization problem

KPFTC = arg min
K

sup
δ ∈ ∆

f ∈ F

J(FL(M(δ, f),K)),

where M(δ, f) denotes the controlled system that depends on some vector δ ∈∆
that represents the model uncertainty as well as the considered the class of an-
ticipated system faults represented by the vector f ∈ F . The lower linear frac-
tional transformation FL(M,K) is used here to denote the closed-loop system,
and the continuous map J(·), called the performance index, is a measure of the
closed-loop system performance, i.e. the smaller the value of J(·), the better
the performance of the system. The optimization problem above is known as a
worst-case optimization problem since a controller is sought that achieves the
best performance for the worst-case uncertainty and faults. The reasoning be-
hind that is that the achieved worst-case performance is also guaranteed for any
fault from F and uncertainty from ∆.

There are two main difficulties with this optimization problem, both related
to convexity. In the state-feedback case, provided that the set {M(δ, f) : δ ∈
∆, f ∈ F} is a convex polytope, the optimization problem is convex in the
controller parameters for most standard performance indexes, including theH2-
norm and theH∞-norm. In this case the worst-case optimization problem above
can be represented as a linear matrix inequality (LMI) optimization problem,
that can be numerically solved in a very efficient way by the existing LMI solvers.
However, when {M(δ, f)} is not a convex set the original optimization problem
is also nonconvex and the LMI solvers cannot be used. A “brute force” method
to circumvent this problem is to over-bound the set {M(δ, f)} by a convex poly-
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tope, and again make use of the LMI solvers. This approach, however, introduces
unnecessary, and sometimes unacceptable, conservatism in the solution.

In order to be able to deal with a more general fault and uncertainty repre-
sentations, for which the set {M(δ, f)} is possibly not nonconvex, an approach
is proposed in Chapter 2 in a probabilistic framework, inspired by Polyak and
Tempo (2001) and Calafiore and Polyak (2001). This approach makes it possible
to consider a very general dependence of the system matrices on the uncertain
parameters and on the faults; in fact, they are only assumed to remain bounded
for all faults and uncertainties. This method is applicable to controller design
problems that are representable as robust LMIs (as in the state-feedback case).
It is basically an iterative algorithm where the starting point is the computation
of an ellipsoid that contains the set of all solutions to the problem. Then, at
each iteration it generates a random uncertainty sample for which the ellipsoid
is computed such that it also contains the solution set and that it has a smaller
volume than the ellipsoid at the previous iteration. The approach is proved to
converge to the solution set in a finite number of iterations with probability one.
This method, however, is used in this thesis not only as an approach to passive
FTC, but additionally as a very useful tool, exploited in some of the other chap-
ters, to parameter-dependent LMIs problems.

The probabilistic method is, unfortunately, not applicable to the output feed-
back case in the presence of uncertainty, when the optimization problem can no
longer be represented as a convex LMI problem, but are represented by bilin-
ear matrix inequalities (BMIs). Even worse, it has been shown in the literature
that the BMI problem is a nonconvex, NP-hard problem. A local BMI optimiza-
tion approach is developed in Chapter 3 that can be used to tackle such BMI
problems. The method has guaranteed convergence to a local optimum of the
performance index J(·).

Active FTC Approaches

The active methods for FTC, developed in Chapters 4 and 5, and tested in Chap-
ter 6, assume that an estimate f̂ of the fault vector f is provided by some FDD
part. Unlike most of the other methods for FTC, this estimate is furthermore
considered in this thesis as imperfect in an attempt to arrive at a more realis-
tic assumption about the FDD process, which is expected to eventually facilitate
the interconnection between the developed active FTC methods with some ex-
isting FDD methods. In order to represent this imprecision in the fault estimate,
uncertainty is added to it so that the true fault vector is assumed to be given by

f = (I +∆f )f̂ for some ∆f ∈∆f . In this way the FDD uncertainty is represented
by the uncertainty set ∆f . This FDD uncertainty, however, usually increases in
size immediately after the occurrence of a fault due to the absence of enough
measurements from the system for precise diagnosis. Later on, as more input-
output data becomes available from the system, the faults estimates are refined
by the FDD scheme and the uncertainty in them decreases. Hence, the perfor-
mance of the overall FTC system can be improved by allowing the controller to
be able to deal with such time-varying size of the FDD uncertainty. To this end,
however, the FDD scheme should be capable of providing not only an estimate
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of the fault but also an upper bound on the size of the uncertainty in this esti-
mate.

The size of the FDD uncertainty is represented in the thesis by a vector γf (k)

such that fk = (I + diag(γf (k))∆̄f )f̂k with ‖∆̄f‖2 ≤ 1. In this way the different
elements of the vector γf (k) assign different uncertainty sizes on the different
entries of the fault vector fk. Therefore, provided that the FDD scheme produces
(f̂k, γf (k)) at each time instant, the active approaches in this thesis aim at fining
a controller by solving the following optimization problem

KAFTC(f̂ , γf ) = arg min
K(f̂ ,γf )

sup
δ ∈ ∆

∆̄f ∈ ∆̄f

γf ≤ γf ≤ γ̄f

J(FL(M(δ, f),K(f̂ , γf )))

where ∆̄f = {∆ ∈∆f : ‖∆‖ ≤ 1}, and where the vectors {γf , γ̄f} define a lower

and an upper bound on the possible uncertainty sizes.
The focus of Chapter 4 is on the design of linear parameter-varying (LPV)

controllers for robust active FTC. Two approaches are proposed. Section 4.2
deals with sensor and actuator faults only. It presents a deterministic approach
that consists of the off-line design of a set of parameter-varying robust output-
feedback controllers, in which the only scheduling parameter is the size γf (k) of
the FDI uncertainty. The set of such LPV controllers is built up in such a way that
each controller corresponding to a suitably defined fault scenario. After a fault
has been diagnosed by the FDD scheme, the reconfigured controller is taken as a
scaled version of one of the predesigned controllers. Although a finite set of con-
trollers are initially designed, the reconfiguration scheme deals with an arbitrary
combination of multiplicative sensor and actuator faults as long as the system
remains stabilizable and detectable. This approach is based on LMIs that are
derived by neglecting the structure of the uncertainty, and is therefore conserva-
tive.

In order to circumvent the conservatism of the deterministic LPV approach,
another approach is proposed in Section 4.3 in the probabilistic framework of
Chapter 2. This approach to robust output-feedback FTC has the following ad-
vantages:

• the controller is scheduled by both the fault estimates f̂k and the size γf (k)
of its uncertainty,

• it deals with structured uncertainty,

• it is applicable to not only sensor and actuator faults, but also to compo-
nent faults.

In order to be applicable in the output-feedback case this method makes use of
the two-step procedure from Chapter 3 that was used there to initialize the BMI
optimization.

Clearly, the LPV methods for robust active FTC are very suitable for online
implementation due to the fact that the design is performed completely off-line.
This results in limited on-line computations for controller re-configuration after
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the occurrence of a fault. The LPV approach from Section 4.3 is tested in Chapter
6 on a real-life experimental setup consisting of a brushless DC motor. The FTC
approach is combined there with an FDD scheme for the detection and estima-
tion of parameter and sensor faults.

Chapter 5 presents a finite-horizon output-feedback MPC design approach
is that is robust with respect to model and FDD uncertainties. The approach
consists in a combination of a Kalman filter and a finite-horizon MPC into one
min-max (worst-case) optimization problem, that is solved at each iteration by
making use of the probabilistic method of Chapter 2 provided that the state co-
variance matrix is given. In order to obtain it, two methods are presented. In
the first method the aim is to find the covariance matrix by minimizing its trace
under the constraint that it is compatible with all values of the uncertainty. This
method also makes use of the probabilistic ellipsoid algorithm from Chapter 2,
and is therefore computationally expensive. To reduce the computations, the
second method is proposed that is much faster but also more conservative. The
complete MPC algorithm has the advantage that it deals with the robust output-
feedback problem directly without having to solve BMI optimization problems.
A disadvantage is its computational demand and the lack of guaranteed closed-
loop stability.

The passive and active approaches to FTC discussed above are focused on
only one local linear model in the presence of uncertainty in both the model de-
scription and in the FDD scheme. The question of how to extend them to deal
with the complete multiple model representation of a nonlinear system is much
more difficult and is in this thesis only partially addressed. Specifically, in the
case of no uncertainty a method is developed in Chapter 7 that can be used for
control of nonlinear systems represented by multiple local models. The start-
ing point is the construction of a model setM that contains either local linear
approximations of a nonlinear system or models representing faulty modes of
operation of a (linear) system. The nonlinear system is then at each time in-
stant represented by a convex combination (with weights µi) of the local linear
models. The method consists of a multiple model estimator that provides local
and global state-estimates as well as estimates of the weights µ̂i. They are then
used to parametrize an MPC. The multiple model estimator consists of a bank of
Kalman filters, one for each local model. The Kalman filters are independently
designed from the MPC. In the case when uncertainty is present in the system
(and, therefore, also in the local models), however, the design of the state ob-
server and the controller can no longer be executed separately due to the fact
that the well known separation principle no longer holds. It therefore remains
for future research to investigate how to deal with uncertainties in the elements
of the model setM.
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Samenvatting

Fouten in regelsystemen zijn het gevolg van storingen in systemen en leiden
tot een achteruitgang van de prestaties of zelfs tot instabiliteit van het systeem.
Wanneer bepaalde fouten in sommige onderdelen van een systeem niet op tijd
worden aangepakt kan dit makkelijk leiden tot een complete uitval van het sys-
teem. Bij veiligheidskritische systemen kunnen zulke failures ernstige conse-
quenties hebben variërend tussen grote economische verliezen en dodelijke on-
gelukken. Er zijn talrijke voorbeelden van voorvallen met dergelijke tragische
uitkomst. Het is dus belangrijk dat zulke veiligheidskritische systemen beschik-
ken over eigenschappen als verhoogde bedrijfszekerheid en veiligheid.

Een in de industrie vaak gebruikte aanpak om deze eigenschappen te verbe-
teren is door gebruik te maken van hardware redundantie in het systeem, dat wil
zeggen door middel van het verdubbelen of verdrievoudigen van de meest kri-
tische hardware componenten. Een nadeel dat de toepassing van deze aanpak
vaak verhindert, is de toename van het gewicht en een verhoging van de kos-
ten. Daarom is het grootste gedeelte van het huidige onderzoek op het gebied
van fault-tolerant control (FTC) gefocusseerd op het ontwikkelen van modelge-
baseerde technieken die gebruik maken van de al in het systeem bestaande ana-
lytische redundantie.

In het algemeen zijn er twee benaderingen tot fout-tolerant regelen: passie-
ve en actieve. De passieve FTC benadering is gebaseerd op robuust regelaaront-
werp en probeert een verhoogde ongevoeligheid voor bepaalde geanticipeerde
systeemfouten in het gesloten-lus systeem te bewerkstelligen. Het grootste na-
deel van deze aanpak is dat op deze manier alleen een beperkte verzameling van
fouten kan worden behandeld (met name fouten die geen grote invloed hebben
op het dynamische gedrag van het systeem) en dat deze benadering tot lage-
re prestatie van het systeem leidt. Het laatstgenoemde kan worden verklaard
met de worst-case optimalisatie die inherent is aan het robuuste regelaaront-
werp. Als gevolg hiervan krijgt men voor het nominale systeem dezelfde presta-
tie als voor alle verwachtte foutieve regimes van het systeem. De actieve bena-
dering tot FTC is daarentegen gebaseerd op of een compleet her-ontwerp (her-
configuratie) van de regelaar, of de selectie van een regelaar uit een verzameling
van off-line ontworpen regelaars. Deze methode vereist vaak de aanwezigheid
van een fout-detectie en diagnose (FDD) onderdeel dat belast is met de taak de
fouten die in het systeem optreden te detecteren en lokaliseren. Figuur 8.2 geeft
de structuur van een compleet actief FDD-gebaseerd FTC systeem weer.

In dit proefschrift worden zowel passieve als actieve FTC technieken voor-
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Figuur 8.2: Hoofd componenten van een actief FDD-gebaseerd FTC systeem.

gesteld. Het beschouwt niet het FDD deel in Figuur 8.2; dit is een apart onder-
zoeksgebied op zich. In een poging tot een meer realistische probleemformule-
ring te komen wordt er in dit proefschrift veel aandacht besteden aan de vraag
hoe men moet omgaat met inaccurate informatie van het FDD onderdeel (FDD
onzekerheid) alsmede met onzekerheid in het model van het regelsysteem.

Passieve FTC Benadering

In Hoofdstukken 2 en 3 worden passieve FTC methodes voorgesteld waarin het
doel is robuustheid van het gesloten-lus systeem te realiseren te aanzien van
zowel onzekerheid in het model als systeemfouten. In overeenstemming met dit
doel wordt in het proefschrift het probleem van het bepalen van een robuuste re-
gelaar K gedefinieerd als de oplossing van het volgende optimalisatie probleem

KPFTC = arg min
K

sup
δ ∈ ∆

f ∈ F

J(FL(M(δ, f),K)),

waarin M(δ, f) het regelsysteem representeert als een functie van een bepaalde
vector δ ∈ ∆ die hier gebruikt wordt om model onzekerheid alsmede de be-
schouwde groep van geanticipeerde systeemfouten f ∈ F voor te stellen. De
lower linear fractional transformatie FL(M,K) geeft het gesloten-lus systeem
aan, en de continu afbeelding J(·), die prestatie index wordt genoemd, wordt
gebruikt als een maatstaf voor de prestatie van het gesloten-lus systeem. Des te
kleiner de waarde van J(·) des te beter de prestatie van het systeem. Het boven-
genoemde optimalisatie probleem staat bekend als het worst-case optimalisatie
probleem omdat er een regelaar wordt gezocht dat de beste prestatie garandeert
in het geval van de slechtste mogelijke onzekerheid en fouten. De redenering
hierachter is dat de worst-case prestatie die op deze manier wordt bereikt, gega-
randeerd is voor iedere fout uit F en onzekerheid uit ∆.

Er zijn twee complicaties met dit optimalisatie probleem, die allebei verband
houden met convexiteit. In het geval van toestandsterugkoppeling, en wanneer
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de set {M(δ, f) : δ ∈ ∆, f ∈ F} een convex polytope is, is het optimalisatie pro-
bleem convex in de parameters van de regelaar voor de meeste prestatie indexes,
inclusief de H2-norm en de H∞-norm. In dit geval kan het bovenstaande opti-
malisatie probleem makkelijk worden omgezet in een linear matrix inequality
(LMI) optimalisatie probleem. Zulk LMI optimalisatie probleem kan heel effi-
cient numeriek worden opgelost door de bestande LMI solvers. Aan de andere
kant, wanneer {M(δ, f)} geen convex set is, blijft het originele optimalisatie pro-
bleem nog altijd nonconvex en zo kunnen de LMI solvers hierop niet toegepast
worden. De meest voor de hand liggende oplossing is eerst de set {M(δ, f)} te
begrenzen door een convex polytope en vervolgens gebruik te maken van de LMI
solvers. Deze benadering produceert echter een heel conservatieve oplossing
dat hetgeen onacceptabel is.

Om met wat meer algemenere representaties van fouten en onzekerheden
om te kunnen gaan, waarbij de set {M(δ, f)}mogelijk nonconvex is, een probabi-
listische benadering voorgesteld in Hoofdstuk 2 is. Deze aanpak is geı̈nspireerd
door het werk van Polyak and Tempo (2001) en Calafiore and Polyak (2001). De-
ze benadering maakt het mogelijk dat de systeemmatrices op een heel algeme-
ne manier afhankelijk zijn van de onzekere parameters en van de fouten; in feite
wordt er alleen aangenomen dat de systeemmatrices begrensd blijven voor alle
fouten en mogelijke waarden van de onzekerheid. Deze aanpak is toepasbaar
op regelaarontwerp problemen die in de vorm van robuuste LMIs kunnen wor-
den voorgesteld. Het is in principe een iteratief algoritme dat begint met het
berekenen van een initiële ellipsoı̈de die de set van alle oplossingen van het pro-
bleem bevat. Gedurende elke iteratie genereert het algoritme een willekeurige
monster van de onzekerheid en op basis daarvan wordt de volgende ellipsoı̈de
berekend zodanig dat zij ook de set van alle oplossingen van het probleem bevat
en haar volume kleiner is dan dat van de ellipsoı̈de op de vorige iteratie. Er wordt
bewezen dat dit algoritme met een waarschijnlijkheid van één in een eindig aan-
tal stappen convergeert naar de set van oplossingen. Deze aanpak wordt in het
proefschrift gebruikt niet alleen als een benadering voor passive FTC, maar ook
als een hele nuttige tool voor LMI problemen die op een algemene manier van
parameters afhangen. Daar wordt ook nog in andere hoofdstukken gebruik van
gemaakt.

Helaas is de probabilistische methode niet direct toepasbaar op uitgangste-
rugkoppeling problemen in de aanwezigheid van onzekerheid. Voor deze pro-
blemen kan het optimalisatieprobleem niet in convex LMI probleem worden
omgezet, maar wordt beschreven door bilinear matrix inequalities (BMIs). Het
is aangetoond in de literatuur dat het BMI probleem een nonconvex, NP-hard
probleem is. In Hoofdstuk 3 wordt een lokale BMI optimalisatie benadering ont-
wikkeld die toegepast kan worden op zulke BMI optimalisatieproblemen. Deze
methode heeft een gegarandeerde convergentie naar een lokaal optimum van
de prestatie index J(·).

Actieve FTC Benadering

In de actieve methodes voor FTC, beschreven in Hoofdstukken 4 en 5, en ge-

test in Hoofdstuk 6, wordt er aangenomen dat er een schatting f̂ van de vector
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f bestaat verkregen uit het FDD schema. In tegenstelling tot de meeste andere
methodes voor FTC wordt deze schatting in dit proefschrift als onnauwkeurig
beschouwd teneinde een meer realistischer veronderstelling over de FDD pro-
ces te verkrijgen. Dit zou dan de combinatie moeten vergemakkelijken tussen de
in dit proefschrift ontwikkeld actieve FTC methodes en de al bestande FDD al-
goritmen. Om deze onnauwkeurigheid in de schatting van de fout wiskundig te
kunnen voorstellen wordt onzekerheid geı̈ntrodoceerd zodat de echte fout vec-

tor beschreven wordt als f = (I +∆f )f̂ voor ∆f ∈∆f . Op deze manier wordt de
FDD onzekerheid voorgesteld door de onzekerheid set ∆f . De grootte van deze
FDD onzekerheid neemt echter na het optreden van een fout vaak toe omdat er
dan niet genoeg ingang-uitgang metingen beschikbaar zijn voor een nauwkeuri-
ge detectie. Later, als meer informatie van het systeem beschikbaar is worden de
fout schattingen verfijnd door het FDD schema en zal de onzekerheid afnemen.
De prestatie van het FTC systeem kan dus worden verbeterd door de regelaar
zodanig te ontwerpen dat hij dan met tijdsvariërende FDD onzekerheid om kan
gaan. Daarvoor moet natuurlijk het FDD schema in staat zijn om niet alleen de
fouten te schatten maar ook de grootte van de onzekerheid in deze schattingen.

In dit proefschrift wordt de grootte van de FDD onzekerheid voorgesteld door

een vector γf (k) zodanig dat fk = (I + diag(γf (k))∆̄f )f̂k met ‖∆̄f‖2 ≤ 1. Op
deze manier worden door γk verschillende wegingsfactoren toegewezen aan de
elementen van de vector fk. Onder de veronderstelling dat het FDD schema

op elk tijdstip (f̂k, γf (k)) produceert, proberen de actieve FTC methodes in dit
proefschrift een regelaar te vinden door het volgende optimalisatie probleem op
te lossen:

KAFTC(f̂ , γf ) = arg min
K(f̂ ,γf )

sup
δ ∈ ∆

∆̄f ∈ ∆̄f

γf ≤ γf ≤ γ̄f

J(FL(M(δ, f),K(f̂ , γf )))

waarin ∆̄f = {∆ ∈ ∆f : ‖∆‖ ≤ 1}, en de vectoren {γf , γ̄f} een onder- een een

bovengrens definiëren op de grootte van de onzekerheid.
Hoofdstuk 4 concentreert zich op het ontwerp van lineair parameter-variërende

(LPV) regelaars voor robuust actief FTC. Twee benaderingen worden voorge-
steld. In Sectie 4.2 worden alleen sensor en actuator fouten beschouwd. Daarin
wordt een deterministische benadering ontwikkeld die bestaat uit het off-line
ontwerp van een verzameling van robuust uitgangsterugkoppeling LPV rege-
laars, waarin de enige scheduling parameter γf (k) is, d.w.z. de grootte van de
FDD onzekerheid. Deze verzameling van LPV regelaars wordt zodanig opge-
bouwd dat elke regelaar met één specifiek fout scenario overeenkomt. Nadat
een fout is gediagnosticeerd door de FDD schema, wordt als regelaar een ge-
schaalde versie van een van de LPV regelaars gebruikt. Hoewel er slechts een
eindig aantal LPV regelaars off-line is ontworpen, behandelt dit her-configuratie
schema iedere willekeurige combinatie van multiplicatieve sensor en actuator
fouten zolang het systeem stabiliseerbaar en detecteerbaar blijft. Deze benade-
ring is gebaseerd op LMIs die de structuur van de onzekerheid negeren, en is dus
conservatief.

Om het conservatisme van de deterministische LPV benadering te omzeilen
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wordt er in Sectie 4.3 een probabilistische benadering voorgesteld op basis van
de resultaten van Hoofdstuk 2. Deze LPV benadering tot robuust uitgangsterug-
koppeling heeft de volgende voordelen:

• de regelaar hangt zowel van de fout schattingen f̂k als van de grootte van
hun onzekerheid γf (k) af,

• het gaat met gestructureerd onzekerheid om,

• het is niet alleen toepasbaar op sensor en actuator fouten, maar ook op
component fouten.

In het uitgangsterugkoppeling geval maakt deze benadering gebruikt van de twee-
stappen procedure van Hoofdstuk 3 die daar gebruik werd om de BMI optimali-
satie te initialiseren.

De LPV methodes voor robuust actief FTC zijn met name heel geschikt voor
online implementatie vanwege het feit dat het regelaarontwerp off-line gebeurt.
Dit resulteert in minder online berekeningen voor de her-configuratie van de re-
gelaar na het optreden van een fout. De LPV benadering van Sectie 4.3 wordt
later in Hoofdstuk 6 getest op een experimentele opstelling bestaand uit een
borsteloze DC motor. Daar wordt de FTC benadering gekoppeld aan een FDD
schema voor de detectie en schatting van parameter- en sensor fouten.

In Hoofdstuk 5 wordt een eindige horizon uitgangsterugkoppeling MPC be-
nadering voorgesteld die robuust is voor model- en FDD onzekerheid. Deze aan-
pak is gebaseerd op een combinatie van een Kalman filter en een eindige horizon
MPC in een min-max (worst-case) optimalisatieprobleem. Dit wordt dan op ie-
der tijdstip opgelost met behulp van de probabilistische methode van Hoofdstuk
2 onder de veronderstelling dat de covariantie matrix van de toestand bekend is.
Om deze te bepalen zijn er twee methodes voorgesteld. In de eerste methode
is de doel om het spoor van de covariantie matrix te minimaliseren onder de
beperking dat deze compatibel is voor alle waardes van de onzekerheid. Deze
methode maakt ook gebruik van de probabilistische ellipsoı̈de benadering uit
Hoofdstuk 2 en is daardoor veeleisend ten aanzien van de nodige berekeningen.
Om de berekeningen te verminderen wordt er een tweede methode voorgesteld
die veel sneller is maar ook veel conservatiever. Het complete MPC algoritme
heeft als voordeel dat het het robuuste uitgangsterugkoppeling probleem be-
nadert zonder BMI optimalisatie problemen op te hoeven lossen. Nadeel is de
rekencomplexiteit en het feit dat de stabiliteit van de gesloten-lus niet gegaran-
deerd is.

De hierboven besproken passieve en actieve FTC benaderingen richten zich
alleen op een local lineair model in de aanwezigheid van onzekerheid in de be-
schrijving van het model en in de FDD schema. De vraag hoe deze uitgebreid
kunnen worden om met een multiple-model representatie van een niet-lineair
systeem om te kunnen gaat is veel ingewikkelder en is in dit proefschrift slechts
gedeeltelijk beschouwd. In het bijzonder, voor het geval wanneer er geen onze-
kerheid in het model is, is een methode in Hoofdstuk 7 ontwikkeld die gebruikt
kan worden voor het regelen van niet-lineaire systemen die door een aantal lo-
cale modellen worden beschreven. Het uitgangspunt is het opbouwen van een
model setM die bestaat of uit locale lineaire approximaties van een niet-lineair
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systeem of uit modellen die verschillende fout regimes van een (lineair) systeem
voorstellen. Het niet-lineaire systeem wordt dan op elk tijdstip voorgesteld door
een convexe combinatie (met wegingsfactoren µi) van de locale lineaire model-
len. Deze methode is gebaseerd op een multiple model estimator dat de locale
toestanden en de globale toestand schat alsmede de wegingen µ̂i. Deze worden
vervolgens gebruikt in een MPC. De multiple model estimator bestaat uit een
verzameling van Kalman filters, een voor elk model, die onafhankelijk van de
MPC regelaar zijn ontworpen. Als er wel onzekerheid is in het systeem (en dus
ook in de locale modellen) kan het ontwerp van de toestandsschatter echter niet
ontkoppeld worden van het ontwerp van de regelaar als gevolg van het feit dat in
dit geval het welbekende separation principle niet meer geldig is. Dus de vraag
hoe we met onzekerheid in de locale modellen om kunnen gaan blijft open en
moet in de toekomst nader worden bekeken.



Notation

R the space of real numbers

R
+ the set of positive real numbers

R
n the space of real-valued vectors of dimension n

R
n×m the space of real-valued n×m matrices

C the space of complex numbers

Rn×m the set of rational transfer matrices

RH∞ the set of stable real rational transfer matrices

L2 the space of square-integrable signals

AT the transpose of the matrix A

A∗ the complex conjugate transpose of the matrix A

A−1 the inverse of the matrix A

A
1
2 the symmetric positive-definite square root of the

matrix A

A† the pseudo-inverse of the matrix A

A > 0 (A ≥ 0) The symmetric matrix A is positive (semi)definite

A < 0 (A ≤ 0) The symmetric matrix A is negative (semi)definite

In the identity matrix of dimension n× n

In×m the n×m matrix with ones on the main diagonal

.
= equal by definition

‖x‖2 the vector/signal 2-norm of x

‖x‖2W (= xT Wx) the weighted vector 2-norm

‖A‖F the Frobenius norm of the matrix A

〈A,B〉
.
= trace(AT B)

λ(A) the eigenvalues of the matrix A
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σ(A) the singular values of the matrix A

volA the volume of the closed set A

⌈a⌉ the minimum integer number larger than or equal to a

⋆ entries in LMIs implied by symmetry

• entries in matrices of no importance

Π−[A] the projection onto the cone of symmetric negative

definite matrices

Π+[A] the projection onto the cone of symmetric positive

definite matrices

Sym(A)
.
= A + A∗

⊕n
i=1 Ai the direct sum of the matrices Ai, i = 1, 2, . . . , n

A
⊗

B the Kronecker product of the matrices A and B

co{S} the convex hull of the set S

FL(M,K) the lower LFT of the transfer matrices M and K

FL(M,∆) the upper LFT of the transfer matrices M and ∆

‖M‖2 theH2-norm of the system M

‖M‖∞ theH∞-norm of the system M

diag{A1, . . . , An} the block-diagonal matrix with the matrices Ai on the

main diagonal

diag{x} the diagonal matrix with off-diagonal entries equal to

zero and the voctor x on its main diagonal

trace(A) the trace of the matrix A

det(A) the determinant of the matrix A

lim the determinant of the matrix A

min minimum

max maximum

sup supremum

inf infenium

∈ belongs to

⊆ subset of
⋃

union
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⋂
intersection

� end of proof

N (x̄, S) random Gaussian process with mean x̄ and covariance

matrix S
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List of Abbreviations

BDCM Brushless DC Motor

BMI Bilibear Matrix Inequality

CR Controller Reconfiguration,

CRLLS Constraint Robust Linear Least-Squares Problem

DK Alternating Coordinate Method

EA Ellipsoid Algorithm

EMF Electro-Magnetic Force

EsA Eigenstructure Aassignment

FDD Fault Detection and Diagnosis

FTC Fault-Tolerant Control

FTCS Fault-Tolerant Control System

GPC Generalized Predictive Control

IMM Interacting Multiple Model

iPC Integral Predictive Control

LFT Linear Fractional Transformation

LLS Linear Least Squares

LMI Linear Matrix Inequality

LPV Linear Parameter-Varying

LQ Linear Quadratic

LGG Linear Quadratic Gaussian

LQR Linear Quadratic Regulator

LTI Linear Time-Invariant

LTV Linear Time-Varying

MC Method of Centers
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MM Multiple Model

MMAC Multiple-Model Adaptive Control

MPC Model Predictive Control

NMI Nonlinear Matrix Inequality

PATH Path-Following Method

PI Proportional-Integral

PIM Pseudo-Inverse Method

PMF Perfect Model Following

PWM Pulse-Width modulated

PWL Piecewise Linear

RDA Remote Data Access

RLS Recursive Least Squares

RM Reconfiguration Mechanism

RMA Rank Minimization Approach

SDP Semi-Definite Programming

SIA Subgradient Iteration Algorithm

SISO Single-Input Single-Output

SRM Space Robotic Manipulator
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Gopinathan, M., Bošković, J., Mehra, R., Rago, C., 1998. A multiple model predictive sche-
me for fault-tolerant flight control design. In: Proceedings of the 37th IEEE Conference
on Decision and Control (CDC’98). Tampa, Florida, USA, pp. 1376–1381.

Griffin, G., Maybeck, P., 1997. MMAE/MMAC control for bending with multiple uncertain
parameters. IEEE Transations on Aerospace and Electronic Systems 33(3), 903–911.

Griffiths, B., Loparo, K., 1995. Optimal control of jump linear gaussian systems. Internati-
onal Journal of Control 42(4), 791–819.

Grigoradis, K., Skelton, R., 1996. Low-order control design for LMI problems using alter-
nating projection methods. Automatica 32(8), 1117–1125.

Grötschel, M., Lovász, L., Schrijver, A., 1988. Geometric Algorithms and Combinatorial
Optimization. Springer-Verlag, Berlin, Germany.

Hajiyev, C., Caliskan, F., 2003. Fault Diagnosis and Reconfiguration in Flight Control Sys-
tems. Kluwer Academic Publishers, Boston.

Hamada, Y., Shin, S., Sebe, N., 1996. A design method for fault-tolerant control systems
based on H∞ optimization. In: Proceedings of the 35th Conference on Decision and
Control (CDC’96). Kobe, Japan, pp. 1918–1919.

Hassibi, A., How, J., Boyd, S., 1999. A path-following method for solving BMI problems
in control. In: Proceedings of the American Control Conference (ACC’99). San Diego,
California, USA, pp. 1385–1389.

Heiming, B., Lunze, J., 1999. Definition of the three-tank benchmark problem for control-
ler reconfiguration. In: Proceedings of the 5th European Control Conference (ECC’99).
Karlsruhe, Germany, http://www.control.auc.dk/ftc/html/others.html.

Ho, L., Yen, G., 2001. Reconfigurable control system design for fault diagnosis and re-
configuration. In: Proceedings of the 40th IEEE Conference on Decision and Control
(CDC’01). Orlando, Florida, USA.

http://www.control.auc.dk/ftc/html/others.html


222 References
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Öhrn, K., Ahlén, A., Sternad, M., 1995. Order statistics and probabilistic robust control.
IEEE Transactions on Automatic Control 40(3), 405–418.



References 229

Oishi, Y., Kimura, H., 2001. Randomized algorithm to solve parameter dependent linear
matrix inequalities and their computational complexity. In: Proceedings of the 40th
IEEE Conference on Decision and Control (CDC’01). Orlando, Florida, USA, pp. 2025–
2030.

Oliveira, M., Bernussou, J., Geromel, J., 1999a. A new discrete-time robust stability condi-
tion. Systems & Control Letters 37(4), 261–265.

Oliveira, M., Geromel, J., Bernussou, J., 1999b. An LMI optimization approach to multi-
objective controller design for discrete-time systems. In: Proceedings of the 38th IEEE
Conference on Decision and Control (CDC’99). Phoenix, Arizona, USA, pp. 3611–3616.

Palhares, R., de Souza, C., Peres, P., 1999. Robust H∞ filter design for uncertain discrete-
time state-delayed systems: An LMI approach. In: Proceedings of the 38th IEEE Confe-
rence on Decision and Control (CDC’99). Phoenix, Arizona, USA.

Palhares, R., Ramos, D., Peres, P., 1996. Alternative LMIs characterization of H2 and cen-
tral H∞ discrete-time controllers. In: Proceedings of the 35th Conference on Decision
and Control (CDC’96). Kobe, Japan, pp. 1459–1496.

Palhares, R., Takahashi, R., Peres, P., 1997. H2 and H∞ guaranteed costs computation for
uncertain linear systems. International Journal of Systems Science 28(2), 183–188.

Park, D., Jun, B., 1992. Selfperturbing recursive least squares algorithm with fast tracking
capability. Electronics Letters 28(6), 558 – 559.

Patton, R., 1997. Fault tolerant control: the 1997 situation. In: Proceedings of the 3th Sym-
posium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPRO-
CESS’97). Hull University, Hull, UK, pp. 1033–1054.

Peres, P., Palhares, R., 1995. Optimal H∞ state feedback control for discrete-time linar
systems. In: Second Latin American Seminar on Advanced Control, LASAC’95. Chile,
pp. 73–78.

Peters, M., Stoorvogel, A., 1994. Mixed H2/H∞ control in a stochastic framework. Linear
Algebra and its Applications 205-206, 971–996.

Pillay, P., Krishnan, R., 1989. Modeling, simulation, and analysis of permanent-magnet
motor drives, part II: The brushless DC motor drive. IEEE Transactions on Industry
Applications 25(2), 274–279.

Piug, V., Quevedo, J., 2001. Fault-tolerant PID controllers using a passive robust fault dia-
gnosis approach. Control Engineering Practice 9, 1221–1234.

Podder, T., Surkar, N., 2001. Fault-tolerant control of an autonomous underwater vehicle
under thurster redundancy. Robotics and Autonomous Systems 34, 39–52.

Polyak, B., Tempo, R., 2001. Probabilistic robust design with linear quadratic regulators.
Systems & Control Letters 43(5), 343–353.

Ponsart, J., Join, C., Theilliol, D., Sauter, D., 2001. Sensor fault diagnosis and accommo-
dation in nonlinear system. In: Proceedings of the 6th European Control Conference
(ECC’01). Porto, Portugal.



230 References

Qu, Z., Ihlefeld, C., Yufang, J., Saengdeejing, A., 2001. Robust control of a class of nonli-
near uncertain systems - fault tolerance against sensor failures and subsequent reco-
very. In: Proceedings of the 40th IEEE Conference on Decision and Control (CDC’01).
Orlando, Florida, USA.

Rantzer, A., Johansson, M., 1997. Piecewise quadratic optimal control. In: Proceedings of
the American Control Conference (ACC’97). New Mexico, USA.

Rato, L., Lemos, M., 1999. Multimodel based fault tolerant control of the 3-tank system. In:
Proceedings of the 5th European Control Conference (ECC’99). Karlsruhe, Germany.

Rauch, H., 1994. Intelligent fault diagnosis and control reconfiguration. IEEE Control Sy-
stem Magazine 14(3), 6–12.

Rauch, H., 1995. Autonomous control reconfiguration. IEEE Control Systems Magazine
15(6), 37–48.

Safonov, M., Goh, K., Ly, J., 1994. Control system synthesis via bilinear matrix inequalities.
In: Proceedings of the American Control Conference (ACC’94). Baltimore, USA, pp. 45–
49.

Schdeier, G., Frank, P., 1999. Fault-tolerant ship propulsion control: sensor fault detection
using a non-linear observer. In: Proceedings of the 5th European Control Conference
(ECC’99). Karlsruhe, Germany.

Scherer, C., 1996. Mixed H2/H∞ control for time-varying and linear parametrically-
varying systems. International Journal of Robust and Nonlinear Control 6(9-10), 929–
952.

Scherer, C., Gahinet, P., Ghilali, M., 1997. Multiobjective output-feedback control via LMI
optimization. IEEE Transactions on Automatic Control 42(7), 896–911.

Schram, G., Copinga, G., Bruijn, P., Verbruggen, H., 1998. Failure-tolerant control of air-
craft: a fuzzy logic approach. In: Proceedings of the American Control Conference
(ACC’98). Philadelphia, USA, pp. 2281–2285.

Scokaert, P., Mayne, D., 1998. Min-max feedback model predictive control for constrained
linear systems. IEEE Transactions on Automatic Control 43(8), 1136–1142.

Seo, C., Kim, B., 1996. Design of robust reliable H∞ output feedback control for a class of
uncertain lineat systems with sensor failure. International Journal of Systems Science
27(10), 963–968.
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